System for updating an identity of a device in response to...

Electrical computers and digital data processing systems: input/ – Input/output data processing – Peripheral configuration

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C710S011000, C710S074000, C711S114000, C714S022000, C709S227000

Reexamination Certificate

active

06366965

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a method for assuring unique identification of a device having redundant components storing the device identity, and more particularly, to a method for uniquely identifying an storage system enclosure having redundant environmental service cards that provide the unique identity of the enclosure so that the cards may be located in any storage enclosure or swapped between storage enclosures.
2. Description of Related Art
A computer system generally utilizes one or more data storage devices for persistent storage of information. In larger computer systems, storage systems having multiple data storage devices are often used to store correspondingly large amounts of information. A storage system may be equipped with one or more storage enclosures. These storage systems often integrate a number of data storage devices (e.g., tape drives, compact disks and disk drives or more simply “disks”) into an enclosure (storage module) to store data accessible to a computer system.
As storage capacity requirements increase and multiple storage devices are utilized, reliability concerns relating to the storage system grow proportionally. A number of solutions have been implemented for providing reliability within a storage system. These solutions typically incorporate the use of redundant storage components. In general, redundant components are used such that when a first component (primary) fails, a second component (spare or redundant) immediately takes over the operations of the failed component. Such redundancy helps avoid loss of data or loss of access to data due to failure of a particular component in a storage system.
One such redundancy technique in storage systems is the use of redundant disk drives to increase reliability. In order to provide data reliability for the data stored on each of the disks in a storage system, the disks may be mirrored to increase reliability. Mirroring is the process of maintaining a duplicate copy of the data stored on a disk. The duplicate copy is maintained in synchronization with changes made to the original disk drive. Should the original disk drive fail, the duplicate disk drive may be used by the computer system to continue operation without loss of data.
Disk array systems (often referred to as RAID systems, an acronym for Redundant Array of Inexpensive Drives) use mirroring as one form of redundancy to enhance the reliability of disk storage devices. RAID systems also employ other techniques to enhance reliability of stored information. Other RAID techniques use parity (Boolean exclusive-or computed values) to provide redundancy information capable of regenerating data lost due to a disk drive failure. In general, RAID systems use redundancy (mirroring as well as other redundancy techniques) to assure reliable storage of data on the disk drives.
Modern storage systems (including RAID storage systems) are comprised of many components in addition to disk drives. Any one component could cause failure of the storage system. For example, although no disk drive, per se, fails, if the power supply that provides power to the disk drives fails, the effect is similar—stored data will be unavailable. Although data is not lost, its unavailability is the equivalent of a failure of the storage system in many applications.
To avoid such failures, modern storage systems include redundant components for many other components in the system. Storage systems that physically house components in modular enclosures may include redundant enclosures. In each enclosure are redundant components such as power supplies, communication paths to and from the storage devices (e.g., SCSI busses or Fibre Channel links), fans, disk controllers, storage devices, etc. Each of these other redundant components could be a point of failure in the storage system if not for the redundancy.
Large storage systems often include environmental service or monitoring devices or cards within each enclosure to monitor the redundant components and the environmental conditions within the storage enclosure. These environmental service cards sense failures of other redundant components in the enclosure. Such environmental service cards for monitoring purposes must also be redundant to help assure reliable operation. As with the disks, the system cannot have a single point of failure, thus, the need for total redundancy.
It is common to swap redundant components when a failure is sensed (or for other administrative and configuration reasons). For example, a failed component in one storage system may be removed and a replacement or repaired component may be inserted in its place. A swap that is performed with power to the system shut off is often referred to as a “cold swap.” In addition, most modern storage systems also permit swapping of redundant components while a storage system is powered up and even operational. Such swaps are often referred to as “hot swaps” or “warm swaps.”
An ideal solution for uniquely identifying any device is to record the ID in a component that cannot be removed from the device. A problem with a device that has such a fixed (non-removable) component is that the device's reliability is negatively impacted. The fixed component is a single point of failure that cannot be replaced to assure reliable access to the device. It is therefore preferred to record an ID for the device in a component that has a redundant mate to assure that there is no single point of failure of the device.
The environmental service card is often used as a repository to store and report a unique identifier associated with the storage enclosure in which it is housed. Standards for storage enclosure designs require a unique identifier be associated with the enclosure. In particular, the SCSI Enclosure Services (“SES”) and the SCSI Accessed Fault-Tolerant Enclosure (“SAF-TE”) standards require that fields be available to report the identifier of the enclosure.
Use of unique identifiers is common to many applications. For example, a unique identifier—a Social Security number—identifies each individual to the federal government (and other institutions). Or for example, each telephone in the national telephone system is identified by a unique identifier—a country code, area code and phone number.
Because redundant environmental service cards are swappable and capable of storing and reporting an enclosure identifier, a problem exists trying to coordinate which identifier to report after a hot or cold swap of an environmental service card. Therefore, a mechanism is necessary to report and store the proper identifier associated with the storage enclosure. It is important that an enclosure always report the same identifier as stored in its environmental service card(s). It is further important that no two enclosures report the same identifier.
A problem can occur if redundant environmental service cards in an enclosure are programmed with the same identifier and the cards are later swapped between different enclosures. For example, when the redundant environmental service card is taken from a first enclosure and inserted into a second enclosure within the system, the two enclosures would report the same identifier.
A partial solution is to always use the unique identifier programmed into a particular one of the redundant environmental service cards (i.e., always a first card or always a card in a particular physical location of the enclosure). However, even with such a partial solution, another problem can occur because the identifier will change if the chosen environmental service card is removed.
Existing identifier formats provide unique identifiers for enclosures having a single environmental service card, but do not specify a method whereby unique identifiers can be maintained for enclosures having redundant environmental service cards that are swapped among enclosures. Therefore, it is desirable to provide a method to ensure that enclosures having redundant environmental cards can be uniquely identified.
SUMMARY OF THE INVENT

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System for updating an identity of a device in response to... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System for updating an identity of a device in response to..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System for updating an identity of a device in response to... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2899434

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.