Mixed execution stack and exception handling

Electrical computers and digital processing systems: processing – Processing control – Branching

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06415381

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to implementations of an execution stack. More specifically, the invention relates to implementing an execution stack for use with functions that may be written in multiple programming languages such as, for example, an execution stack for a Java™ virtual machine.
The Java™ programming language is an object-oriented high level programming language developed by Sun Microsystems and designed to be portable enough to be executed on a wide range of computers ranging from small personal computers up to supercomputers. Computer programs written in Java (and other languages) may be compiled into virtual machine instructions for execution by a Java virtual machine. In general the Java virtual machine is an interpreter that decodes and executes the virtual machine instructions.
The virtual machine instructions for the Java virtual machine are bytecodes, meaning they include one or more bytes. The bytecodes are stored in a particular file format called a “class file” that includes bytecodes for methods of a class. In addition to the bytecodes for methods of a class, the class file includes a symbol table as well as other ancillary information.
A computer program embodied as Java bytecodes in one or more class files is platform independent. The computer program may be executed, unmodified, on any computer that is able to run an implementation of the Java virtual machine. The Java virtual machine is a software emulator of a “generic” computer that is a major factor in allowing computer programs for the Java virtual machine to be platform independent.
The Java virtual machine is commonly implemented as a software interpreter. Conventional interpreters decode and execute the virtual machine instructions of an interpreted program one instruction at a time during execution. Compilers, on the other hand, decode source code into native machine instructions prior to execution so that decoding is not performed during execution. Because conventional interpreters decode each instruction before it is executed repeatedly each time the instruction is encountered, execution of interpreted programs is typically quite slower than compiled programs because the native machine instructions of compiled programs can be executed on the native machine or computer system without necessitating decoding.
Typically, the Java virtual machine will be written in a programming language other than the Java programming language (e.g., the C++programming language). Therefore, execution of a Java program may involve execution of functions written in multiple programming languages. Additionally, the bytecodes themselves may call functions (e.g., system functions for input/output) that are not written in the Java programming language. It is therefore common for an executing Java program to entail the execution of functions that were written in multiple programming languages. It would be desirable to have an execution stack that stores functions written in multiple programming languages. Additionally, it would be beneficial to allow exceptions to be propagated through these functions, with conversion of the exception to the appropriate format where necessary.
The Java virtual machine allows Java programs to dynamically load and execute native methods, where a native method is implemented in a language other than the Java programming language. Native methods often require resources to execute so resources may be allocated and deallocated each time a native method is called. However, resource allocation and deallocation may be very time consuming and the continual allocation and deallocation of resources may result in a significant decrease in efficiency of the interpreted program. Therefore, it would be desirable to provide more efficient techniques of resource allocation and deallocation.
Accordingly, there is a need for techniques for implementing an execution stack capable of holding function activations for functions implemented in different programming languages, and in particular allow exceptions to be propagated through these functions and the corresponding activations. Additionally, there is a need to provide interpreters that are more efficient in the way resources are allocated and deallocated so that execution speed may be increased.
SUMMARY OF THE INVENTION
In general, embodiments of the present invention provide innovative systems and methods for implementing an execution stack that stores frames for functions written in multiple programming languages. Frames for functions written in multiple programming languages may be stored on the same execution stack utilizing an entry frame (or data block) that stores pointers to a previous frame on the execution stack for a function written in the same programming language. The entry frame allows the execution stack to be traversed “around” frames for functions written in other programming languages and exceptions may be propagated through the execution stack for handling by the appropriate exception handler, even when the functions were written in different programming languages and the format of the exceptions are different. Additionally, resources may be allocated upon entering a function written in one programming language (e.g., the Java programming language) so that the resources will be available for any subsequent functions (e.g., native) in other programming languages. The resources may then be deallocated once when the calling function terminates, thereby increasing the efficiency of resource allocation and deallocation. Several embodiments of the invention are described below.
In one embodiment, a computer implemented method for implementing an execution stack that stores frames for functions written in multiple programming languages is provided. A first frame for a function written in a first programming language may be stored on the execution stack. When the first function calls a second function written in a second programming language, a data block may be stored on the execution stack before a second frame for the second function. The data block includes at least one pointer to a previous frame on the execution stack written in the first programming language. In preferred embodiments, the data block stores a stack pointer and a frame pointer to the previous frame on the execution stack, where the stack pointer and frame pointer were stored in local storage (e.g., thread local storage).
In another embodiment, a computer implemented method for implementing an execution stack that stores frames for functions written in multiple programming languages is provided. A first frame for a function written in a first programming language may be stored on the execution stack. When the first function calls a second function written in a second programming language, at least one pointer to the first frame on the execution stack may be stored in local storage (e.g., thread local storage). The at least one pointer may be a stack pointer and a frame pointer. Subsequently, when a third function written in the first programming language is called, a data block may be stored on the execution stack before a third frame for the third function. The data block may store the at least one pointer to the first frame on the execution stack that were stored in local storage so that the data block provides a way around the second frame on the execution stack. In preferred embodiments, the first programming language is the Java programming language.
In another embodiment, a data structure stored by a computer readable medium for implementing an execution stack is provided. A first frame is stored on the execution stack for a first function written in a first programming language. A second frame is stored on the execution stack for a second function written in a second programming language. On the execution stack above the second frame on the execution stack, a data block is stored which includes at least one pointer to the first frame on the execution stack. In a preferred embodiment, the data block stores a stack pointer

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mixed execution stack and exception handling does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mixed execution stack and exception handling, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mixed execution stack and exception handling will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2895242

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.