Method of extracting layout parasitics for nets of an...

Computer-aided design and analysis of circuits and semiconductor – Nanotechnology related integrated circuit design

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C716S030000

Reexamination Certificate

active

06421814

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to the field of designing and fabricating integrated circuits. More specifically, the present invention relates to a system for extracting layout parasitics.
Integrated Circuit Design and Fabrication
Integrated circuits are electrical circuits comprised of transistors, resistors, capacitors, and other components on a single semiconductor “chip” in which the components are interconnected to perform a given function such as a microprocessor, programmable logic device (PLD), electrically erasable programmable memory (EEPROM), random access memory (RAM), operational amplifier, or voltage regulator. A circuit designer designs the integrated circuit by creating a circuit schematic indicating the electrical components and their interconnections. Generally, designs are simulated by computer to verify functionality and ensure performance goals are satisfied.
Integrated circuits are typically fabricated using a photolithography technique where a semiconductor material is selectively exposed to light by using masks. The exposed (or unexposed) areas of the semiconductor material are processed to form the features of the integrated circuit such as transistors and interconnects. Processing continues layer by layer until all the layers of the integrated circuit are formed.
Each mask contains the geometries for a particular layer of the integrated circuit. For example, a geometry may be used to form the metal interconnection between two transistors. To generate the masks for an integrated circuit, the circuit designer first creates a layout of the electrical components that implements the design in a circuit schematic. This layout is generally contained in a computer database having all the geometries for all mask layers. From this computer database, the masks are generated.
The layout of an integrated circuit contains parasitic resistances and capacitances from the interconnections and devices. The values of these parasitics depend on the process parameters, shape and dimensions of a particular geometry, and relationship of a particular geometry to other geometries. These parasitics affect the performance and possibly the functionality of an integrated circuit. Consequently, during the design phase of an integrated circuit, these parasitics are extracted from a layout and taken into consideration during circuit simulation. Two conventional approaches for extracting layout parasitics are the full-chip Boolean operation method and direct simulation method.
The Full-Chip Boolean Operation Method
The full-chip Boolean operation method extracts full-chip layout parasitics. It is based on Boolean operations in which the user specifies all combinations of each individual layer as a Boolean operation and gives the coefficient value in the command file. To develop these Boolean operations requires a programmer who will be required to write the custom equation for each design. As chips continue to increase in size and functionality, so does the time and effort required to develop the correct Boolean operation.
The approach of using Boolean operations to calculate resistance and capacitance parasitic data was developed over fifteen years ago. The simple formulas generated by this approach were previously sufficient for design. However, as feature sizes of VLSI chips approach 0.5 micron and smaller, this approach can not extract layout parasitics information accurately enough to meet the performance requirements for interconnect simulations and timing analysis of present-day high-performance VLSI designs.
This full-chip Boolean operation method is typically performed as a batch extraction and uses the command file to extract parasitic capacitances for the entire integrated circuit. Consequently, this becomes very time consuming because the approach computes parasitic resistance and capacitance value for geometries in total isolation.
A user who desires only to extract data on a particular net, such as clock net, must extract an entire integrated circuit to get the desired information. After this information is obtained and analysis is performed on the net, the user will want to make changes if the targeted performance goal is not achieved. After any changes are made, a user will need to extract the entire design once again to perform the required analysis. These design iterations can take weeks to complete. Even if this method is successfully used, the user cannot generate a complete distributed RC netlist (which provide greater accuracy) suitable for timing or interconnect simulation.
The above approach also uses textual data to pass information to and from the extraction process. Another disadvantage of the full-chip Boolean net is that a user cannot select a net for extraction. Furthermore, there is no graphical interface or viewer that permits a user to view the design or highlight and select a net or block for extraction of the parasitic data. A user must extract the entire design each time a change is made to the layout or extraction is required on any part of the chip.
The Direct Simulation Method
The direct simulation method has been implemented to extract small-area layout parasitics. It is based on user specifying extraction for an area or region of an integrated circuit. This area is then divided into smaller areas which a field solver can simulate. However, a drawback is that the field solver takes a long time to simulate even small areas. Consequently, this approach is limited to small-area parasitic extraction. Although some improvements to field solvers have been made, extraction time is still excessive. Furthermore, a field solver approach cannot generate a complete net-by-net distributed RC netlist including transistor parameter timing or power simulation.
As the feature sizes of integrated circuits are shrinking, operating frequencies of integrated circuits are increasing, and number of transistors per integrated circuit is increasing, performance of integrated circuits depend more on layout parasitics, especially the layout parasitics of interconnect. Furthermore, since number and complexity of integrated circuits continues to increase, there is a need for better, faster, more accurate, and improved layout parasitics extraction methods.
SUMMARY OF THE INVENTION
A layout parasitic extraction system is disclosed. The system may be coupled with layout network connectivity extraction (NCE) or layout versus schematic checker (LVS) to allow net-by-net layout parasitic extraction under user input without again requiring whole chip connectivity extraction.
The system takes user specified information to automatically create an extraction routine for the particular design. The system can display the design to allow for interactive extraction at the net, block, or integrated circuit level. The system uses the layout net or net number to extract selected net parasitics in conjunction with a file of transistors to create a complete netlist for timing simulation.
The present invention uses a lookup library of predefined geometries to minimize extraction time and adds any new geometries discovered during extraction to the lookup library. The system calls the parasitic simulator directly to calculate the value and updates the library. After the simulator calculates the required value, the system provides a netlist to other third-party simulators for further analysis and simulation.
Further features of the invention, its nature and various advantages will become more apparent from the accompanying drawings and following detailed description of the preferred embodiments.


REFERENCES:
patent: 4837447 (1989-06-01), Pierce et al.
patent: 5031111 (1991-07-01), Chao et al.
patent: 5043920 (1991-08-01), Malm et al.
patent: 5050091 (1991-09-01), Rubbin
patent: 5051938 (1991-09-01), Hyduke
patent: 5081602 (1992-01-01), Glover
patent: 5157668 (1992-10-01), Buenzli, Jr. et al.
patent: 5202841 (1993-04-01), Tani
patent: 5210701 (1993-05-01), Hana et al.
patent: 5218551 (1993-06-01), Agrawal et al.
patent: 5231590 (1993-07-01), Kumar et al.
patent: 524745

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of extracting layout parasitics for nets of an... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of extracting layout parasitics for nets of an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of extracting layout parasitics for nets of an... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2878350

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.