Semiconductor device and manufacturing method thereof

Semiconductor device manufacturing: process – Making field effect device having pair of active regions... – On insulating substrate or layer

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S059000

Reexamination Certificate

active

06387737

ABSTRACT:

DETAILED DESCRIPTION OF THE INVENTION
Technical Field to which the Invention Belongs
The present invention relates to a semiconductor device having a circuit comprising a thin film transistor (hereafter referred to as TFT), and to a method of manufacturing thereof. For example, the present invention relates to an electro-optical device, typically a liquid crystal display panel, and to electronic equipment loaded with this type of electro-optical device as a part.
Note that, throughout this specification, semiconductor device denotes a general device which can function by utilizing semiconductor characteristics and that the category of semiconductor devices includes electro-optical devices, semiconductor circuits, and electronic equipment.
In recent years, techniques of structuring a thin film transistor (TFT) by using a semiconductor thin film (with a thickness on the order of several nm to several hundred of nm) formed over a substrate having an insulating surface have been in the spotlight. The thin film transistor is being widely applied in an electronic device such as an IC or an electro-optical device, and in particular, its development as a switching element of an image display device has been proceeding rapidly.
Conventionally, a liquid crystal display device is known as an image display device. Active matrix liquid crystal display devices have come into widespread due to the fact that, compared to passive liquid crystal display devices, a higher precision image can be obtained. By driving pixel electrodes arranged in a matrix state in the active matrix liquid crystal display device, a display pattern is formed on a screen in an active matrix liquid crystal display device. In more detail, by applying a voltage between a selected pixel electrode and an opposing electrode corresponding to the pixel electrode, optical modulation of a liquid crystal layer arranged between the pixel electrode and the opposing electrode is performed, and the optical modulation is recognized as a display pattern by an observer.
The use of this type of active matrix liquid crystal display device is spreading, and along with making the screen size larger, demands for higher precision, higher aperture ratio, and higher reliability are increasing. Further, at the same time, demands are increasing for improving productivity and lowering costs.
Conventionally, an amorphous silicon film is ideally used as an amorphous semiconductor film because of the capability of forming it on a large surface area substrate at a low temperature equal to or less than 300° C. Further, a reversed stagger type (or bottom gate type) TFT having a channel forming region formed by an amorphous semiconductor film is often used.
Problem to be Solved by the Invention
Conventionally, the production costs have been high in order to manufacture a TFT on a substrate with a technique of photolithography using at least 5 photomasks for an active matrix type liquid crystal display device. In order to improve productivity and yield, reducing the number of steps is considered as an effective means.
Specifically, it is necessary to reduce the number of photomasks needed to manufacture the TFT. The photomask is used in a photolithography technique in order to form a photoresist pattern, which becomes an etching process mask, over the substrate.
By using one photomask, there are applied with steps such as applying resist, pre-baking, exposure, development, and post-baking, and in addition, steps of film deposition and etching, resist peeling, cleaning, and drying are added before and after these steps. Therefore, the entire process becomes complex, which leads to a problem.
Further, static electricity is generated by causes such as friction during manufacturing steps because the substrate is an insulator. Short circuits develop at an intersection portion of wirings formed on the substrate when static electricity is generated, and then deterioration or breakage of the TFT due to static electricity leads to display faults or deterioration of image quality in liquid crystal display devices. In particular, static electricity develops during rubbing in the liquid crystal aligning process performed in the manufacturing steps, and this becomes a problem.
The present invention is for solving such problems, and an object of the present invention is to reduce the number of steps for manufacturing a TFT, and to realize a reduction in the production cost and an improvement in yield for a semiconductor device typified by an active matrix type liquid crystal display device.
Further, an object of the present invention is to provide a structure and a method of manufacturing the structure for resolving the problems of damage to the TFT and deterioration of TFT characteristics due to static electricity.
Means for Solving the Problem
In order to solve the above problems, in the present invention, first, a gate wiring line is formed by a first photomask.
Next, a gate insulating film, a non-doped amorphous silicon film (hereinafter referred to as a-Si film), an amorphous silicon film containing an impurity element to give an n-type conductivity (hereinafter referred to as n
+
a-Si film), and a conductive film are continuously formed.
Next, a gate insulating film, an active layer comprising the a-Si film, a source wiring line (including a source electrode), and a drain electrode are formed through patterning by a second photomask.
Thereafter, after a transparent conductive film is formed, a pixel electrode made of the transparent conductive film is formed by a third photomask, and further, at the same time that a source region and a drain region comprising the n
+
a-Si film are formed, a part of the a-Si film is removed.
By adopting such structure, the number of photomasks used in a photolithography technique can be made three.
Further, the source wiring is covered by a transparent conductive film comprising the same material as the pixel electrode, a structure which protects the entire substrate from eternal static electricity or the like is used. Furthermore, a structure in which a protecting circuit is formed using the transparent conductive film may also be used. The generation of static electricity due to friction between production equipment and the insulating substrate can be prevented during manufacturing processing by using this type of structure. In particular, the TFTs can be protected from static electricity generated during a liquid crystal alignment process of rubbing performed during manufacturing steps.
A structure of the present invention disclosed in this specification is:
a semiconductor device possessing a gate wiring, a source wiring, and a pixel electrode, having:
the gate wiring
102
formed on an insulating surface;
the insulating film
110
formed on the gate wiring;
the amorphous semiconductor film
122
formed on the insulating film;
the source region
123
and the drain region
124
formed on the amorphous semiconductor film;
the source wiring
125
or the electrode
126
formed on the source region or the drain region; and
the pixel electrode
127
formed on the electrode; characterized in that:
one end surface of the drain region
124
or the source region
123
reversed corresponds with an end surface of the insulating film
110
, an end of the amorphous semiconductor film
122
and an end surface of the electrode
126
.
Further, another structure of the present invention is:
a semiconductor device possessing a gate wiring, a source wiring, and a pixel electrode, having:
the gate wiring
102
formed on an insulating surface;
the insulating film
110
formed on the gate wiring;
the amorphous semiconductor film
122
formed on the insulating film;
the source region
123
and the drain region
124
formed on the amorphous semiconductor film;
the source wiring
125
or the electrode
126
formed on the source region or the drain region; and
the pixel electrode
127
formed on the electrode; characterized in that:
one end surface of the drain region
124
or the source region
123
reversed corresponds with an end surface

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Semiconductor device and manufacturing method thereof does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Semiconductor device and manufacturing method thereof, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor device and manufacturing method thereof will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2867762

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.