Fabrication of a field effect transistor with three sided...

Semiconductor device manufacturing: process – Making field effect device having pair of active regions... – On insulating substrate or layer

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06342410

ABSTRACT:

TECHNICAL FIELD
The present invention relates generally to fabrication of field effect transistors having scaled-down dimensions, and more particularly, to fabrication of a field effect transistor with a three sided gate structure in SOI (semiconductor on insulator) technology for minimization of short channel effects for the field effect transistor having scaled down dimensions of tens of nanometers.
BACKGROUND OF THE INVENTION
A long-recognized important objective in the constant advancement of monolithic IC (Integrated Circuit) technology is the scaling-down of IC dimensions. Such scalingdown of IC dimensions reduces area capacitance and is critical to obtaining higher speed performance of integrated circuits. Moreover, reducing the area of an IC die leads to higher yield in IC fabrication. Such advantages are a driving force to constantly scale down IC dimensions.
Referring to
FIG. 1
, a common component of a monolithic IC is a MOSFET (Metal Oxide Semiconductor Field Effect Transistor)
100
which is fabricated within a semiconductor substrate
102
. The scaled down MOSFET
100
having submicron or nanometer dimensions includes a drain extension
104
and a source extension
106
formed within an active device area
126
of the semiconductor substrate
102
. The drain extension
104
and the source extension
106
are shallow junctions to minimize short-channel effects in the MOSFET
100
having submicron or nanometer dimensions, as known to one of ordinary skill in the art of integrated circuit fabrication.
The MOSFET
100
further includes a drain contact junction
108
with a drain silicide
110
for providing contact to the drain of the MOSFET
100
and includes a source contact junction
112
with a source silicide
114
for providing contact to the source of the MOSFET
100
. The drain contact junction
108
and the source contact junction
112
are fabricated as deeper junctions such that a relatively large size of the drain silicide
110
and the source silicide
114
respectively may be fabricated therein to provide low resistance contact to the drain and the source respectively of the MOSFET
100
.
The MOSFET
100
further includes a gate dielectric
116
and a gate electrode
118
which may be comprised of polysilicon. A gate silicide
120
is formed on the polysilicon gate electrode
118
for providing contact to the gate of the MOSFET
100
. The MOSFET
100
is electrically isolated from other integrated circuit devices within the semiconductor substrate
102
by shallow trench isolation structures
121
. The shallow trench isolation structures
121
define the active device area
126
, within the semiconductor substrate
102
, where the MOSFET
100
is fabricated therein.
The MOSFET
100
also includes a spacer
122
disposed on the sidewalls of the gate electrode
118
and the gate dielectric
116
. When the spacer
122
is comprised of silicon nitride (SiN), then a spacer liner oxide
124
is deposited as a buffer layer between the spacer
122
and the sidewalls of the gate electrode
118
and the gate dielectric
116
.
As the dimensions of the MOSFET
100
are scaled down to tens of nanometers, short channel effects degrade the performance of the MOSFET
100
. Short channel effects that result due to the short length of the channel between the drain extension
104
and the source extension
106
of the MOSFET
100
are known to one of ordinary skill in the art of integrated circuit fabrication. Because short channel effects may severely degrade the performance of the MOSFET, mechanisms are desired for minimizing short channel effects in a MOSFET having scaled down dimensions of tens of nanometers.
SUMMARY OF THE INVENTION
Accordingly, in a general aspect of the present invention, a semiconductor pillar is formed in SOI (silicon on insulator) technology with a three-sided gate structure. The three-sided gate structure contacts a gate portion of the semiconductor pillar at three sides of the semiconductor pillar for enhanced control of charge accumulation in the gate portion of the semiconductor pillar. With such enhanced control, short channel effects of the MOSFET formed with such a three-sided gate structure are minimized.
In one embodiment of the present invention, for fabricating a field effect transistor, a semiconductor pillar is formed on a layer of insulating material with a top surface and first and second side surfaces of the semiconductor pillar being exposed. A layer of dielectric material is formed on the top surface and the first and second side surfaces of the semiconductor pillar. A layer of conductive material is deposited on the layer of dielectric material on the top surface and the first and second side surfaces of the semiconductor pillar.
A dummy dielectric structure is formed that covers a portion of the layer of conductive material such that a remaining portion of the layer of conductive material on the semiconductor pillar is exposed. The dummy dielectric structure has a predetermined sidewall on the layer of conductive material on the semiconductor pillar.
A layer of hardmask dielectric is deposited on top and on the predetermined sidewall of the dummy dielectric structure and on the remaining portion of the layer of conductive material that is exposed. The layer of hardmask dielectric is anisotropically etched such that the hardmask dielectric remains at the predetermined sidewall of the dummy dielectric structure to form a spacer of hardmask dielectric.
The dummy dielectric structure is etched away such that the spacer of hardmask dielectric remains. The spacer of hardmask dielectric covers the layer of conductive material on the top surface and the first and second side surfaces of the semiconductor pillar at a gate portion of the semiconductor pillar. Any exposed region of the layer of conductive material and the layer of dielectric material not covered by the spacer of hardmask dielectric is etched away such that the conductive material and the dielectric material remain on the top surface and the first and second side surfaces at the gate portion of the semiconductor pillar The conductive material that remains on the top surface and the first and second side surfaces at the gate portion of the semiconductor pillar forms a three-sided gate structure of the field effect transistor. In addition, the dielectric material that remains on the top surface and the first and second side surfaces at the gate portion of the semiconductor pillar forms a three-sided gate dielectric of the field effect transistor.
The present invention may be used to particular advantage when the semiconductor pillar is comprised of silicon, the layer of insulating material is comprised of silicon dioxide (SiO
2
), the layer of dielectric material is comprised of silicon dioxide (SiO
2
), the layer of conductive material is comprised of polysilicon, the dummy dielectric structure is comprised of silicon nitride (Si
3
N
4
), and/or the layer of hardmask dielectric is comprised of silicon dioxide (SiO
2
).
In another embodiment of the present invention, for fabricating a MOSFET (metal oxide semiconductor field effect transistor), the spacer of the hardmask dielectric is etched away. A drain contact pad is formed at a first end of the semiconductor pillar, and a source contact pad is formed at a second end of the semiconductor pillar. A dopant is implanted into exposed regions of the semiconductor pillar to form a drain region within the semiconductor pillar at a first side of the gate portion toward the first end of the semiconductor pillar, and to form a source region within the semiconductor pillar at a second side of the gate portion toward the second end of the semiconductor pillar. A gate spacer is formed to surround the gate structure and the gate dielectric. A gate silicide is formed with the gate structure, a drain silicide is formed with the drain region, and a source silicide is formed with the source region.
In this manner, the three-sided gate structure contacts a gate portion of the semiconductor pillar at three sides of the semiconductor pilla

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fabrication of a field effect transistor with three sided... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fabrication of a field effect transistor with three sided..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fabrication of a field effect transistor with three sided... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2860991

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.