Chemical vapor deposition of titanium from titanium...

Semiconductor device manufacturing: process – Coating with electrically or thermally conductive material – To form ohmic contact to semiconductive material

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S680000, C438S683000, C438S648000, C427S250000, C427S255110

Reexamination Certificate

active

06340637

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to chemical vapor deposition reactions, integrated circuit manufacturing and, more particularly, to methods for depositing titanium metal layers on in-process integrated circuits.
2. Background of Related Art
Deposited titanium metal layers are being used with increasing frequency in integrated circuits. One important application involves the formation of contact structures within a dielectric layer. The processing of wafers for the manufacture of integrated circuits commonly requires that contact openings be etched through an insulative layer down to implant or diffusion regions in a semiconductor layer to which electrical contact is to be made. Titanium metal is then deposited over a wafer so that the surface of each exposed implant/diffusion region is coated. The titanium metal is eventually converted to titanium silicide. A silicide is a binary compound formed by the reaction of silicon with the metal at elevated temperatures. The titanium silicide layer serves as an excellent conductive interface at the surface of the implant/diffusion region. A titanium nitride barrier layer is then deposited, coating the walls and floor of the contact opening. The contact plugs are formed by depositing a tungsten or polysilicon layer via chemical vapor deposition. In the case of tungsten, the titanium nitride layer provides greatly improved adhesion between the walls of the opening and the tungsten metal. In the case of the polysilicon, the titanium nitride layer acts as a barrier against dopant diffusion from the polysilicon layer into the diffusion region.
Deposited titanium metal layers are also used as an underlayment for aluminum alloy layers deposited on interlevel dielectric layers. The titanium and aluminum alloy layer stack is etched to form interconnect lines within the integrated circuit. The titanium metal layer not only provides increased resistance to electromigration of aluminum atoms, but also provides improved adhesion of the aluminum alloy layer to the dielectric layer as compared with an aluminum alloy layer without the titanium underlayment.
Two principal techniques are presently available for creating thin titanium films: deposition via reactive sputtering of a titanium target and chemical vapor deposition. When topography is present, reactive sputtering results in titanium films having poor step coverage. Although collimated sputtering improves the coverage on trench floors, it does not help coverage on vertical surfaces. In fact, as trench aspect ratios (the ratio of depth to width) exceed 4 or 5 to 1, the deposition rate at the bottom of the trench is minimal because of the buildup of deposited metal at the mouth of the trench. As the mouth of the trench narrows during the deposition process, the comers of the trench floor receive increasingly less deposited material. Because of the step-coverage problem, sputter-deposited films are limited primarily to underlayment layers on relatively planar surfaces. Another problem related to collimated sputtering is that the collimator grid dramatically slows the deposition rate and must be cleaned frequently.
Chemical vapor deposition processes have an important advantage over sputter deposition techniques in that the deposited layers have much higher conformality (i.e., uniform thickness on both horizontal and vertical surfaces), layers of any thickness may be deposited, and the deposition rate does not slow with time (as with collimated sputtering). This is especially advantageous in modem ultra-large-scale-integration (ULSI) circuits, where minimum feature widths may be smaller than 0.3 &mgr;m and trenches and contact openings may have width-to-depth aspect ratios of 1:5 or more. In U.S. Pat. No. 5,173,327, a chemical vapor deposition process for titanium is disclosed. Titanium tetrachloride and hydrogen gas are admitted to a chemical vapor deposition chamber in which a substrate (i.e., semiconductor wafer) has been heated to about 400° C. Titanium tetrachloride molecules are adsorbed on the substrate surface and react with hydrogen with the following chemical equation: TiCl
4
+2H
2
=Ti+4HCL. The deposition rate of this reaction can be enhanced by striking a radio-frequency plasma in the deposition chamber. Because the diatomic hydrogen molecule is relatively difficult to ionize, the flow rate of hydrogen gas into the deposition chamber must be considerably greater than that for titanium tetrachloride.
The low ratio of titanium tetrachloride molecules to hydrogen molecules is not conducive to high deposition rates. In addition, as the aspect ratio of trenches and contact openings increases, step-coverage worsens due to the limited amount of titanium tetrachloride that is adsorbed toward the bottom of the trenches and contact openings. Although the aforementioned titanium deposition process is satisfactory for many applications, the present invention aims at providing a chemical vapor deposition process for titanium having increased conformality and more rapid deposition rates.
BRIEF SUMMARY OF THE INVENTION
This invention is embodied in a new process for depositing titanium metal layers via chemical vapor deposition. The process provides deposited titanium layers having a high degree of conformality, even in trenches and contact openings having aspect ratios greater than 1:5. The reaction gases for the improved process are titanium tetrachloride and a hydrocarbon gas, which for a preferred embodiment of the process is methane. The chemical reaction is as follows:
TiCl
4
+4CH
4
=Ti+4Ch
3
Cl+2H
2
The reaction is carried out in a plasma environment created by a radio frequency AC source greater than 10 KHz. The standard FCC-assigned frequencies of 400 KHz and 13.56 MHz are entirely satisfactory. The key to obtaining the proper reaction products (i.e., titanium metal rather than titanium carbide) is to set the plasma-sustaining electrical power within a range that will break just one hydrogen bond from the hydrocarbon gas. In the case of methane, highly reactive methyl radicals (CH
3
—) are formed. These radicals attack the titanium-chlorine bonds of the tetrachloride molecule and form chloromethane, which is evacuated from the chamber as it is formed. In the case of other hydrocarbon gases, highly reactive alkyl radicals are formed. The alkyl radicals attack the titanium tetrachloride and form an alkyl chloride gas which is evacuated from the chamber.


REFERENCES:
patent: 4925813 (1990-05-01), Autier et al.
patent: 5052339 (1991-10-01), Vakerlis et al.
patent: 5094711 (1992-03-01), Narasimhan et al.
patent: 5260107 (1993-11-01), Kawamura et al.
patent: 5344792 (1994-09-01), Sandhu et al.
patent: 5645900 (1997-07-01), Ong et al.
patent: 5665431 (1997-09-01), Narasimhan
patent: 5846881 (1998-12-01), Sandhu et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Chemical vapor deposition of titanium from titanium... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Chemical vapor deposition of titanium from titanium..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Chemical vapor deposition of titanium from titanium... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2842769

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.