Portable computer for infrared data communication

Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C361S679090, C361S689000, C361S689000, C345S156000, C345S158000, C359S107000, C359S199200, C359S199200, C359S199200, C359S199200, C235S375000, C235S441000, C235S486000, C235S487000

Reexamination Certificate

active

06327141

ABSTRACT:

CLAIM OF PRIORITY
This application makes reference to, incorporates the same herein, and claims all benefits accruing under 35 U.S.C. §119 from an application entitled Portable Computer For Infrared Data Communication earlier filed in the Korean Industrial Property Office on the 17
th
day of Oct. 1997, and there duly assigned Ser. No. 97-53475, a copy of which is annexed hereto.
BACKGROUND OF THE INVENTION
1. Technical Field
The present invention relates to a portable computer with infrared data communication capabilities, and more particularly to a portable computer provided with an infrared transceiver capable of reliably performing radio data communication with other electronic devices.
2. Related Art
As well known to those skilled in the art, several techniques have been developed and proposed to allow users to more effectively use electronic devices. Particularly, developments in radio communication techniques allow a variety of electronic devices to perform radio data communication with other electronic devices, thus allowing such radio communication to be generalized in daily life.
Due to such improved and generalized radio communication techniques, computers perform data communication with each other, their accessories or portable data terminals. Such radio communication is advantageous in that it somewhat effectively eliminates known problems experienced in communication through wire.
Computer systems are information handling systems that are utilized by many individuals and businesses today. A computer system can be defined as a microcomputer that includes a central processing unit (CPU), a volatile memory, a non-volatile memory, a display monitor, a keyboard, a mouse or other input device such as a trackball, a floppy diskette drive, a compact disc-read only memory (CD-ROM) drive, a modem, a hard disk storage device, and a printer. Typically, a computer system's main board, which is a printed circuit board known as a motherboard, is used to electrically connect these components together. Portable computers are often referred to as laptop, notebook, or subnotebook computers.
An example of such radio communication techniques used with computers is an infrared transceiver capable of allowing computers to perform radio data communication according to the provisions of Infrared Developers Association (IrDA). The Infrared Developers Association (IrDA) is a group of representatives from computer-related companies. The Infrared Developers Association was formed to develop a standard set of specifications enabling a computer system to utilize infrared signals in lieu of cables in order to communicate with other computer systems and also with peripherals such as printers. On Jun. 30, 1994 the IrDA approved the original specification known as IrDA Version 1.0. Since that time, additional specifications have been approved.
In order to perform such radio data communication according to the provisions of IrDA, the data sending/receiving module of such a transceiver, connected to related circuits of computers, has to be exteriorly installed on the computers. The infrared rays, used in the data communication according to the provisions of IrDA, is radiated linearly due to their characteristics. The radio data communication between two electronic appliances, having such infrared transceivers, is thus exclusively performed when the data sending/receiving modules of the two appliances have to be positioned opposite to each other. In order to perform an effective radio data communication between electronic appliances using such infrared transceivers, it is necessary to limit the distance between the data sending/receiving modules of the appliances within a short distance. It is also necessary to position the data sending/receiving module of one appliance within an angular region inclined from the data sending/receiving module of another appliance at an angle of about 15 degrees upwardly, downwardly, leftwardly or rightwardly.
The data sending/receiving module of such an infrared transceiver is typically positioned on the rear or side wall of an electronic appliance in a vertical direction. Therefore, when an electronic appliance, having such a vertically positioned data sending/receiving module, is used for performing infrared data communication with another appliance having the same type of transceiver, the infrared data communication between the two data sending/receiving modules is free from any trouble caused by an angular position of the two appliances. However, when the modules of the infrared transceivers are placed on positions remarkably diverged from reference positions to the left or right, it is almost impossible to match the data sending/receiving modules of electronic appliances within an effective data communication region. Therefore, the known infrared transceivers are not effectively used with electronic appliances used in offices where it is almost impossible to match the direction of the data sending/receiving modules of the appliances or limit the distance between the modules.
Particularly, due to the above problems experienced in known infrared transceivers, it is very difficult to match the direction of the data sending/receiving modules of electronic appliances or set the distance between the modules in the case of desktop or portable computers. Such portable computers are widely used in recent days in place of desktop computers due to their portability and are classified into laptop computers, notebook computers and palmtop computers. Such desktop or portable computers, provided with infrared transceivers, are typically used while being laid on conference tables or desks. Therefore, when it is necessary to send or receive data between a main computer and a plurality of desktop or portable computers, the desktop or portable computers, laid on tables or desks arranged along several rows, may fail to effectively perform infrared data communication with the main computer.
Exemplars of recent efforts in the art include U.S. Pat. No. 5,812,371 for an Orientation-adjustable Infrared Transceiver Used in a Notebook Type Computer issued to Chen et al., U.S. Pat. No. 5,808,769 for a Combination Diffused and Directed Infrared Transceiver issued to Kerklaan et al., U.S. Pat. No. 5,781,405 for an Electronic Device Having a Rotatably Mounted Infrared Device with a Pair of Pegs Fitting into a Pair of Holes issued to Vossler, and U.S. Pat. No. 5,781,177 for a Combined High-speed and Low-speed Infrared Transceiver on Computer Display Panel Housing issued to Helot et al.
While these recent efforts provide advantages, I note that they fail to adequately address bow a portable computer can be provided with an infrared transceiver capable of efficiently and reliably performing radio data communication with other electronic devices.
SUMMARY OF THE INVENTION
Accordingly, the present invention has been made keeping in mind the above problems occurring in the prior art, and an object of the present invention is to provide a portable computer, which is provided with an infrared transceiver capable of enlarging the data sending/receiving angle and reliably performing radio data communication with another electronic appliance.
Another object of the present invention is to provide a portable computer, which is provided with a selection circuit capable of activating all light elements during a data sending operation of the computer or selecting one active light receiving element from a plurality of light receiving elements during a data receiving operation of the computer, thus performing a reliable infrared data communication.
In order to accomplish the above object, the present invention provides a portable computer for infrared data communication, comprising: a main body having a main board; a display body hinged to an edge of the main body and having a display panel, the display panel being opposed to a top surface of the main body when the main body is covered with the display body; an opening having a predetermined size and configuration and formed on an outside edge of the displ

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Portable computer for infrared data communication does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Portable computer for infrared data communication, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Portable computer for infrared data communication will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2566858

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.