Photosensitive lithographic printing plate

Radiation imagery chemistry: process – composition – or product th – Imaging affecting physical property of radiation sensitive... – Radiation sensitive composition or product or process of making

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C430S159000, C430S160000, C430S278100, C101S466000

Reexamination Certificate

active

06218075

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a photosensitive lithographic printing plate which is prepared by subjecting an anodized aluminum support to an after-treatment and then providing thereon a photosensitive layer.
BACKGROUND OF THE INVENTION
In a conventional manner to make a lithographic printing plate, a photosensitive lithographic printing plate having a thin coating of photosensitive composition on an aluminum plate is exposed imagewise and then developed. The aluminum plate to be used as a support for the lithographic plate generally undergoes a surface roughening treatment using a mechanical method, such as a brush graining method or a ball graining method, an electrochemical method such as an electrolytic graining method, or a combination of mechanical and electrochemical methods, and thereby it comes to have a rough surface like a pear skin. The thus surface-roughened aluminum plate is etched with an aqueous solution of acid or alkali and then anodized. Further, the anodized aluminum plate may receive some treatment for improving water wettability, if needed. On the support prepared in the aforementioned manner, a photosensitive layer is provided to form a photosensitive lithographic printing plate (the so-called presensitized plate). In general such a presensitized plate is subjected successively to imagewise exposure, development and gumming processes to be made into a lithographic printing plate. This lithographic printing plate is mounted in a press, and printing operations are carried out.
As the photosensitive lithographic printing plates to provide lithographic printing plates, there are those of a positive working type and a negative working type.
The positive working photosensitive compositions which have widely been used are compositions comprising o-quinonediazide compounds. Such a photosensitive compound alone or a mixture with an alkali-soluble resin, such as a novolak-type phenol or cresol resin, is coated on a support. In a case where the support used has a water receptive surface, the exposed area of the coating is easily removed with an alkali developer since it changes to soluble in alkali due to decomposition of the o-quinonediazide compound, and thereby the water receptive surface of the support is bared. This bared area of the support receives water but repels ink; while the unexposed area remaining as an image is lipophilic, and so it can receive ink.
With respect to the negative working photosensitive compositions, there are many cases in which a diazonium salt, an azide compound or a photopolymerizing compound is used as photosensitive component. Such a photosensitive component is coated on a support singly or as a mixture with an additive such as an appropriate resin. When a support having a water receptive surface is used, the unexposed area of the coating is removed with a developer to reveal the water receptive surface of the support. This area receives water and repels ink. On the other hand, the area cured by exposure remains as an image upon development, and can receive ink because of its lipophilic properties.
As a method of preparing a support having a water receptive surface, the following are known: the method disclosed in U.S. Pat. No. 3,181,461 wherein the anodized layer is treated with an aqueous alkali metal silicate, the method disclosed in JP-A-2-185493 (the term “JP-A” as used herein means an “unexamined published Japanese patent application”) wherein the anodized aluminum plate is treated with an aqueous solution containing an alkali metal silicate and a hydroxide, the method described in JP-B-46-35685 (the term “JP-B” as used herein means an “examined Japanese patent publication”) wherein the anodized aluminum plate is treated with an aqueous solution of polyvinylphosphonic acid, the method described in JP-A-60-194096 wherein the anodized aluminum material is treated with an aqueous solution of alkali metal silicate, and then with an aqueous solution containing at least one organic polymer having vinylphosphonic acid units and/or vinylmethylphosphinic acid units, the method disclosed in WO 9509384 wherein water wettability is given to an aluminum plate by treating the plate with an aqueous solution of polyvinylphosphonic acid neutralized to pH 2.5-6.6 with an alkali, and the method disclosed in WO 9509086 wherein the mechanically or/and electrically grained aluminum plate is treated with an aqueous solution of polyvinylphosphonic acid neutralized to pH 2.5-6.6 with an alkali to pH 2.5-6.6 to acquire water wettability.
Those methods for conferring water wettability on a support surface have some problems to solve. For instance, poor inking (water log) due to excess of water and ink spreading in the shadow part of an image can occur due to an excess of ink on the lithographic printing plate at the same time depending upon positions along the width direction in a printing machine, thereby failing in providing prints of good quality. In still another case where a great number of copies are printed, stains are generated on the prints with the progress of printing operations since the non-image area of the plate is gradually rendered hydrophobic by the printing ink. In order to recover from this hydrophobic condition, a cleaner containing as main components a support etching agent, such as phosphoric acid, and an ink dissolving agent, such as an aliphatic hydrocarbon, is usually employed. However, the use of such a cleaner causes deterioration of impression capacity in negative working presensitized plates formed using as the support a material which has undergone anodic oxidation and then treatment with an aqueous solution of alkali metal silicate, because the adhesion between the photosensitive layer and the support is weakened by the cleaner. In other negative working presensitized plates formed using as the support an aluminum plate which has undergone anodic oxidation and then treatment with an aqueous solution of polyvinylphosphonic acid adjusted to pH 2.5 or higher, the cleaner used has no bad effect on their impression capacity, but in the case where water is used in a reduced amount as compared with a standard amount, the tendency of causing stains by ink spreading in the image area and stains in the non-image area on prints is increased, and when the amount of water is increased after the stains generate in image area or non-image area, the tendency of causing the prints to suffer from the stains (so-called “water-ink balance scum”) is increased. In still another case as described in Example 1 of JP-A-60-194096, where the negative working presensitized plate is formed using the support which has been anodized and then treated with an aqueous solution of alkali metal silicate and further undergone after-treatment with an aqueous solution of polyvinylphosphonic acid, the use of the cleaner causes deterioration of impression capacity, in analogy with the case of using the support treated with an aqueous solution of alkali metal silicate alone.
SUMMARY OF THE INVENTION
Therefore, an object of the present invention is to provide a lithographic printing plate which suffers no deterioration in impression capacity and is free from deterioration of the water-ink balance scum even when a cleaner is used upon printing.
As a result of our intensive studies of the subject mentioned above, it has been found that the present object can be attained with a photosensitive lithographic printing plate having an aluminum support anodized and then treated with an aqueous solution of polyvinylphosphonic acid adjusted to pH 1.5 or below, thereby achieving the present invention.
DETAILED DESCRIPTION OF THE INVENTION
The main reason for attainment of the present object is probably explained as follows: The surface of an aluminum support is first activated by the etching with an acidic aqueous solution, and thereto a polyvinylphosphonic acid is adsorbed. As the aqueous solution used herein has a very low pH value, the polyvinylphosphonic acid can be adsorbed on the support surface in a large amount, compared with the case of u

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Photosensitive lithographic printing plate does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Photosensitive lithographic printing plate, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Photosensitive lithographic printing plate will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2544726

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.