Nickel hydroxide active material for use in alkaline storage...

Chemistry: electrical current producing apparatus – product – and – Current producing cell – elements – subcombinations and... – Electrode

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C423S594120

Reexamination Certificate

active

06203945

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a nickel hydroxide active material for use in an alkaline storage cell such as a nickel-hydrogen storage cell, a nickel-cadmium storage cell, a nickel-zinc storage cell or the like and a manufacturing method of the same. More particularly, the present invention relates to a nickel hydroxide active material containing a cobalt compound as a conductive agent and a manufacturing method of the same.
2. Description of the Prior Art
In recent years, demands of a high performance storage cell have increased in rapid popularization of portable electronic and communication equipments. In the field of alkaline storage cells, there have been proposed various improvements of a nickel hydroxide active material adapted for use in the alkaline storage cell. For example, Japanese Patent Laid-open Publication No. 59-16269 discloses a method for forming nickel hydroxide with oxidizer in a higher order state. When the nickel hydroxide is formed in a higher order state, nickel hydroxide powder of higher density can be obtained. In the case that the nickel hydroxide powder of higher density is used as an active material, the density of the active material in a substrate of a nickel positive electrode can be increased to enhance the energy density of the nickel positive electrode.
Although the foregoing method is theoretically effective to increase the capacity of the nickel positive electrode, it is difficult to obtain oxy-nickel hydroxide of the &bgr;-type (&bgr;-NiOOH: 19.8 cm
3
/mol) in a crystal state of higher density in volume desirable in electrochemical characterstic. As a result, oxy-nickel hydroxide of the &ggr;-type (&ggr;-NiOOH: 30.6 cm
3
/mol) in a crystal state of lower density in volume undesired as an active material of the nickel positive electrode is produced, and the nickel hydroxide particles are oxidized only at their surfaces. It is, therefore, difficult to adjust the oxidation degree of nickel hydroxide particles. In addition, the oxidizer remains in the nickel hydroxide active material, causing undesired influence to the performance of the storage cell.
To avoid the problems discussed above, there has been proposed a method of electrochemically oxidizing the nickel hydroxide particles under the presence of alkaline solution, wherein a conductive substrate such as foamed nickel is filled with nickel hydroxide and a conductive additive such as a cobalt compound and is charged and discharged in a condition where it has been immersed in an amount of electrolyte. This method is useful for increasing the capacity of the positive electrode without remaining the oxidizer therein. However, after the conductive substrate filled with the nickel hydroxide and conductive additive was oxidized and reduced, the active material is apt to be removed when the conductive substrate is subjected to a washing process for removal of alkali. For this reason, the manufacturing process of the positive electrode becomes complicated. Additionally, the strength of the conductive substrate is decreased during the charge-discharge process.
Although the capacity of the alkaline cell can be increased by electrochemically oxidizing the nickel hydroxide in a powder condition, electrochemical oxidation of the nickel hydroxide may not be effected in a conventional manner since the conductivity of nickel hydroxide itself is poor. For this reason, the inventors have proposed a method for enhancing the conductivity of nickel hydroxide is disclosed in Japanese Patent Laid-open Publication Nos. 8-148145 and 8-148146. In the method disclosed in Japanese Patent Laid-open Publication Nos. 8-148145 and 8-148146, cobalt hydroxide was precipitated on the surface of nickel hydroxide particles and subjected to heat treatment under the presence of alkaline solution so that the cobalt hydroxide is formed in a higher order state. The cobalt compound formed on the surfaces of nickel hydroxide particles is superior in conductivity and is closely mixed with the nickel hydroxide particles at molecular level to effect smooth transfer of electron in electrochemical reaction. This is useful to provide a high performance storage cell.
In the foregoing methods, however, the nickel hydroxide may not be formed in a higher order state. As a result, the density in volume of nickel hydroxide is small, and an amount of the active material filled in a conductive substrate of a specific volume becomes small in comparison with an amount of an active material of higher density in volume. Accordingly, the capacity of an alkaline storage cell using the active material may not be increased. In case the nickel hydroxide may not be formed in a higher order state, it is required to form a specific amount of discharge reserve on a negative electrode. This results in decrease of utilization factor of the active material in the negative electrode.
SUMMARY OF THE INVENTION
It is, therefore, a primary object of the present invention to provide a nickel hydroxide active material superior in conductivity and of higher density in volume useful for increasing the capacity of an alkaline storage cell and to provide a method of manufacturing the nickel hydroxide active material in a simple manner.
According to the present invention, the object is accomplished by providing a nickel hydroxide active material for use in an alkaline storage cell, the active material being essentially composed of nickel hydroxide particles covered with a cobalt compound adhered to their surfaces, wherein the cobalt compound is disordered in its crystal structure and formed in a higher order state containing alkali cation, and wherein the nickel hydroxide is in the form of a higher order nickel compound of higher density in volume.
In a practical embodiment of the present invention, it is preferable that the average oxidation value of the higher order nickel compound is 2.15 to 2.40, and it is also preferable that the higher order cobalt compound is defined to be 1 wt % to 10 wt % relative to the entire weight of the nickel hydroxide active material.
According to an aspect of the present invention, there is provided a manufacturing method of a nickel hydroxide active material for use in an alkaline storage cell, comprising the steps of adhering a cobalt compound of less than 2 in average oxidation value to nickel hydroxide particles, subjecting the cobalt compound adhered to the nickel hydroxide particles to a heat treatment under the presence of alkaline solution and oxygen so that the cobalt compound is disordered in its crystal structure and formed on the surfaces of the nickel hydroxide particles in a higher order state containing alkali cation, mixing the nickel hydroxide particles subjected to the heat treatment with alkaline solution to produce a slurry, and charging an active material essentially composed of the nickel hydroxide particles in such a manner that the slurry is electrochemically oxidized to form the nickel hydroxide particles in a higher order nickel compound of higher density in volume.
In the manufacturing method described above, it is preferable that an amount of charge current at the step of charging the active material is adjusted in such a manner that the average oxidation value of the higher order nickel compound is adjusted to 2.15 to 2.40, and it is also preferable that the step of adhering a cobalt compound of less than 2 in average oxidation value to nickel hydroxide particles is carried out to precipitate the cobalt compound on the surfaces of the active material essentially composed of the nickel hydroxide particles. The step of adhering a cobalt compound of less than 2 in average oxidation value to nickel hydroxide particles may be carried out by mixing cobalt hydroxide and/or cobalt oxide with the active material essentially composed of the nickel hydroxide particles.


REFERENCES:
patent: 4312928 (1982-01-01), Van Deutekom
patent: 5348822 (1994-09-01), Ovshinsky et al.
patent: 5629111 (1997-05-01), Yamawaki et al.
patent: 5672447 (1997-09-01), Yamawaki et al.
p

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nickel hydroxide active material for use in alkaline storage... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nickel hydroxide active material for use in alkaline storage..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nickel hydroxide active material for use in alkaline storage... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2471448

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.