Method of measuring oxide thickness during semiconductor...

Semiconductor device manufacturing: process – With measuring or testing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S295000, C257S296000, C438S015000, C438S240000

Reexamination Certificate

active

06228665

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to techniques for measuring thin insulating layers on a semiconductor wafer, and more particularly, to measurements of very thin metal oxide layers accumulated on C4 solder connections.
2. Description of Related Art
Solder connections composed of PbSn material are generally used for electrical and mechanical attachment for integrated circuit fabrication. Undesired residual metal oxides on the surface of C4 solder connections or balls can prevent an integrated circuit chip from successfully joining or wetting to a chip carrier. A thin layer of metal oxide on the surface of these solder joints will detrimentally contribute to failed electrical connections, and may compromise the chip's mechanical integrity. The metal oxides are non-conductive, having depositions that are difficult to minimize or eliminate. Oxide build-up on solder joints, such as the C4 balls, poses unique problems to the integrated circuit chip manufacturer. The ability to monitor and measure expeditiously the oxide accumulation on a substrate, particularly on the solder joints or balls of the substrate surface, within a real-time, non-destructive measurement, would greatly enhance chip yield, and decrease or eliminate infantile failures commonly associated with the fabrication process. Monitoring oxide thickness of these electrical connections would help minimize the solder joints that remain non-wettable, and facilitate inspecting the health of the manufacturing line.
Oxide thickness has been monitored previously within the art; however, the measurement techniques implemented have been limited in speed and simplicity, and at times have been shown to be destructive to the device under test.
In U.S. Pat. No. 5,485,091, issued to Verkuil on Jan. 16, 1996, entitled “CONTACTLESS ELECTRICAL THIN OXIDE MEASUREMENTS,” a method using corona discharge was taught for measuring the thickness of very thin oxide layers on a silicon substrate. This method involved the active deposition of charge using a corona discharge gun, and then correlated the change in surface potential to layer thickness.
Other passive measurements have also been introduced, using optical or electrical instrumentation. For example, in U.S. Pat. No. 5,343,293 issued to Berger et al., on Aug. 30, 1994, entitled “ELLIPSOMETER,” an optical ellipsometer is used to measure the thickness of oxide films on silicon wafers based on a discernible change in polarized light passing through the film.
Other oxide thickness measurements have relied upon the break down voltage of the oxide dielectric to ascertain the approximate thickness of the film deposition. This, however, is considered a destructive test since the punch-through voltage is capable of delivering additional electrical stress to the product.
Additionally, these methods are not well suited for in-situ monitoring during wafer fabrication. The equipment necessary for implementation is costly and burdensome to operate, typically requiring specially trained technicians. A less time-consuming measurement which can accurately account for extremely thin oxide films, on the order of forty (40) to one hundred sixty angstroms (160), without requiring extensive deviation to the fabrication process, remains an unresolved need in the art.
Bearing in mind the problems and deficiencies of the prior art, it is therefore an object of the present invention to provide a method for measuring oxide thickness during semiconductor fabrication utilizing general electrical parameter measurements that can be easily tested within the fabrication process.
It is another object of the present invention to provide a non-destructive oxide thickness measurement to be used in-situ during semiconductor wafer fabrication.
A further object of the invention is to provide a technique for measuring oxide layer thickness in the regime of forty to one hundred sixty angstroms on solder connections during wafer fabrication.
It is yet another object of the present invention to provide a real-time, non-destructive measurement of oxide layer thickness on a C4 solder connection of a semiconductor substrate.
Still other advantages of the invention will in part be obvious and will in part be apparent from the specification.
SUMMARY OF THE INVENTION
The above and other objects and advantages, which will be apparent to one of skill in the art, are achieved in the present invention which is directed to, in a first aspect, a method for measuring a dielectric layer having capacitance and a thickness, on a conductive material, comprising: providing the dielectric layer; determining an analytical relationship between the dielectric layer thickness and the dielectric layer capacitance; performing an in-situ test of the dielectric layer including measuring the dielectric layer capacitance; and, calculating the dielectric layer thickness by using the measured dielectric layer capacitance. This analytical relationship may be a linear relationship, empirically obtained.
The step of performing the in-situ test may further comprise: placing a test probe on the dielectric layer, the test probe comprising a conductive elastomer portion, a conductive push rod portion, and an insulator portion; connecting an AC generator having an output and a ground return, the AC generator output connecting to the conductive push rod portion, the ground return connecting to the conductive material; measuring a voltage drop across the elastomer portion and the conductive material; and, determining the dielectric layer capacitance from the voltage drop measurement. Predetermining the analytical relationship comprises: performing a plurality of dielectric layer capacitance measurements; converting the plurality of capacitance measurements into reactance values; and, forming the analytical relationship between the reactance values and the dielectric layer thickness, using reactance as a variable in the analytical relationship.
In a second aspect, the instant invention is directed to a method of measuring a thickness of a dielectric layer during semiconductor wafer processing, the dielectric layer formed on a conductive surface, and having capacitance and reactance, the method comprising: providing the dielectric layer; measuring the capacitance of the dielectric layer; calculating the reactance from the capacitance measurement; and, determining the dielectric thickness by using the reactance as a variable within an analytical expression relating reactance to the dielectric thickness.
The step of measuring the capacitance further comprises: measuring a voltage drop across the dielectric layer; and, calculating the dielectric capacitance from the voltage drop measurement.
The voltage drop measurement further comprises: placing a test probe on the dielectric layer, the test probe including a conductive elastomer portion, a conductive push rod portion, and an insulator portion; connecting an AC generator having an output and a ground return, the AC generator output connecting to the conductive push rod, the ground return connecting to the conductive material.
Determining the dielectric layer thickness includes: determining the analytical expression by first measuring a plurality of reactance values from a plurality of dielectric layers using material of the same type as the dielectric layer; measuring thickness of the plurality of dielectric layers using a second thickness measurement scheme; and, developing a best curve fit of the plurality of reactance values to the measured thickness of the plurality of dielectric layer thickness, using reactance as a variable.
In a third aspect, the instant invention is directed to a method of measuring a dielectric layer thickness on a solder connection, in-situ during semiconductor wafer fabrication, the dielectric layer having a capacitance and a reactance, comprising: providing the dielectric layer on the solder connection; measuring the capacitance of the dielectric layer; converting the capacitance to a reactance; and, determining the dielectric la

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of measuring oxide thickness during semiconductor... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of measuring oxide thickness during semiconductor..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of measuring oxide thickness during semiconductor... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2465983

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.