Semiconductor device and method for making the same

Active solid-state devices (e.g. – transistors – solid-state diode – Combined with electrical contact or lead – Flip chip

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S780000, C257S737000, C257S738000, C257S785000, C257S786000, C257S779000, C257S789000, C257S795000

Reexamination Certificate

active

06204564

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a semiconductor device and a method for making the same. More specifically, the present invention relates to a semiconductor device formed into a small package having a lower surface formed with a plurality of external terminal portions arranged in a matrix pattern, and a method of making such a semiconductor device.
2. Background Art
A semiconductor device commonly called BGA (Ball Grid Array) package type or area array package type comprises an insulated substrate having a lower surface formed with a plurality of external terminal portions arranged in a matrix pattern. On an upper surface of this substrate, a semiconductor chip is mounted. Conventionally, the insulated substrate is a rigid substrate typically made of a glass epoxy resin. This rigid substrate has a lower surface formed with a plurality of external terminal portions typically made of solder arranged in a matrix pattern. On the other hand, an upper surface of the substrate is formed with wiring patterns for establishing electrical connection respectively with the plurality of external terminal portions. The external terminal portions are formed by first making the plurality of holes arranged in the matrix pattern on the insulated substrate, then forming the wiring pattern so that each of the holes is reached by a portion of the wiring pattern, forming the plurality of solder balls correspondingly at respective holes, and then heating the solder balls so that part of each solder ball melts to connect with the corresponding portion of the wiring pattern. Through such operations, there is formed the matrix of bump external terminal portions projecting out of the lower surface of the insulated substrate by a predetermined amount and electrically connected with the wiring patterns formed on the upper surface of the insulated substrate. With such an arrangement, the plurality of external terminal portions can be compactly disposed in the matrix pattern on the lower surface of the package. Thus, the package can be compact, and therefore the semiconductor device of this type is suitable to a high-density mounting on a mother substrate.
However, the conventional semiconductor device described above has following problems since the semiconductor chip is mounted to the insulated substrate which is rigid and is made of glass epoxy resin.
First, the thickness of the rigid substrate takes up a considerable part of the total thickness of the semiconductor device. This limits further miniaturization of the semiconductor device in terms of the thickness as well as limiting further reduction in weight.
Second, the rigid substrate made of glass epoxy resin has a coefficient of thermal expansion which is very different from that of the semiconductor chip. Thus, when the semiconductor device is being mounted to the mother substrate, heat applied during the operation may cause excessively large differences in expansion, destroying mechanical or electrical connection between the semiconductor chip and the insulated substrate.
Third, since the rigid substrate has a considerable thickness, it is difficult to further increase disposition density of the external terminal portions formed in the lower surface of the rigid substrate. Specifically, each of the external terminal portions is formed as described earlier by making a hole in the insulated substrate, filling the hole with a ball of solder, and then melting the solder to bond with the wiring pattern formed in the upper surface of the substrate. Hence, in order to make the external terminal portion projecting out of the lower surface of the insulated substrate by a desired amount, the hole in the insulated substrate must be made large enough, and the solder ball to fill the hole must be accordingly large. This limits the disposition density of the external terminal portions, limiting the number of usable terminals in the semiconductor chip for making the semiconductor device, making it impossible to appropriately meet the demand for high-density mounting, as well as making manufacture more costly due to a large consumption of solder.
DESCLOSURE OF THE INVENTION
It is therefore an object of the present invention to provide a semiconductor device wherein a package of the semiconductor device has a lower surface formed with a plurality of external terminal portions arranged in a matrix pattern, and wherein the thickness and weight of the package can be further reduced.
Another object of the present invention is to provide a semiconductor device wherein a package of the semiconductor device has a lower surface formed with a plurality of external terminal portions arranged in a matrix pattern, and wherein a semiconductor chip having a greater number of terminals can be used.
Still another object of the present invention is to provide a method for making a semiconductor device wherein a package of the semiconductor device has a lower surface formed with a plurality of external terminal portions arranged in a matrix pattern, and wherein the thickness and weight of the package can be further reduced, or wherein a semiconductor chip having a greater number of terminals can be used.
According to a first aspect of the present invention, a semiconductor device having the following arrangement is provided.
Specifically, the semiconductor device comprises a film substrate and a semiconductor chip bonded to an upper surface of the film substrate,
the semiconductor chip has a main surface formed with a plurality of terminal pads,
the film substrate has a lower surface formed with a plurality of external terminal portions in a matrix pattern, and an upper surface formed with a plurality of wiring patterns for respectively connecting with the external terminal portions, and
the wiring patterns formed in the upper surface of the film substrate is respectively connected to the terminal pads formed on the main surface of the semiconductor chip.
The film substrate may be made of a polyimide film having a thickness of a few tens of micron meters. The wiring pattern may be made of a thin foil of copper for example. As a film, this substrate is flexible. Therefore, this semiconductor device including the insulated substrate made of the film is considerably thinner as well as lighter than the prior art. Further, it becomes possible to increase the disposition density of external terminal portions. Still further, since the substrate is made of film, it becomes possible to prevent disconnection between the substrate and the semiconductor chip caused by thermal expansion when the semiconductor device is being mounted.
According to a preferred embodiment, each of the above external terminal portions, includes a solder ball placed in a hole formed in the film substrate. Part of the solder ball projects out of the hole beyond the lower surface of the film substrate. Part of the wiring pattern reaches inside the hole, and the solder ball is bonded by melting to this part of the wiring pattern.
Since the substrate is film, size of the solder ball may be smaller for establishing electrical connection with the wiring pattern formed on the upper surface of the substrate as well as for making the external terminal portion project out of the lower surface of the substrate by a predetermined amount. The hole for accepting the solder ball may also be smaller. As a result, it becomes possible to dispose the external terminal portions more densely, which means that a semiconductor chip having a greater number of terminals can be used.
According to the preferred embodiment, each of the terminal pads of the semiconductor chip is a bump pad. The semiconductor chip is bonded to the upper surface of the film substrate with the main surface facing downward, and the bump terminal pads are respectively faced to and electrically connected with the wiring patterns of the film substrate.
In the above arrangement, the semiconductor chip is mounted to the film substrate in a “face down” manner, in which each of the terminal pads in the semiconductor c

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Semiconductor device and method for making the same does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Semiconductor device and method for making the same, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Semiconductor device and method for making the same will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2463154

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.