Apparatus and method for providing modular reconfigurable...

Computer graphics processing and selective visual display system – Plural display systems – Tiling or modular adjacent displays

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C348S121000, C434S069000

Reexamination Certificate

active

06232932

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to computer simulation systems, and, more specifically, to a means of enhancing a computer simulation with one or more Multi-Function Displays.
2. Description of the Prior Art
Multi-Function Displays (MFDs) are, among other things, a state of the art means for providing information to fighter pilots during flight operations. Generally, a Multi-Function Display is a relatively small screen that can display a multitude of images. MFDs are typically surrounded by a plurality of user input devices (buttons, switches, dials, etc.) that can reconfigure the information on the display. Most modern aircraft have several MFDs, each of which can be configured to display information independently of the other MFDs. When multiple MFDs are simultaneously displaying a wide range of information, the situational awareness of the pilot is greatly enhanced. Therefore, MFDs are an excellent means for facilitating successful flight operations.
Modern computer systems are becoming very powerful, and are capable of rendering complex flight simulations that are faithful to the real aircraft that are being simulated. Readily available consumer PCs are becoming increasingly able to render high-fidelity simulations that include 3D accelerated graphics, digital audio, networked communications and multi-player capability, artificial intelligence, and physical feedback devices.
As computer based simulations have become higher in complexity and fidelity, the MFDs that are actually present in the real aircraft that are being simulated by the computer are typically provided for the simulation user as “virtual MFDs”. These virtual MFDs are typically displayed on the main monitor of the computer system, where they take up valuable space on the screen on which they are being displayed. It is typical for a simulation to offer many display modes in order to compensate for this inefficient but necessary use of screen space in displaying MFDs. One screen mode may display a front cockpit view with a few MFDs at the bottom of the screen (simulating the view one might have if sitting in the real aircraft and looking forward in the cockpit), while another may display a front cockpit view with the cockpit and fuselage transparently rendered (thereby providing a fictional, but totally unobstructed front view of the outside world, with no instrumentation or MFDs visible), while another may display a full screen, cockpit only view (with no portion of the outside world visible, wherein multiple MFDs fill the screen, but are relatively low in resolution), while another may show a full screen, high resolution, single MFD view (which obstructs the rest of the simulated world).
The information provided by these virtual MFDs is often indispensable, and therefore, the view on the main display must be changed constantly as the situation requires in order to maintain situational awareness. Many modern simulations have as many as a dozen or more independent views, with each showing some rendered subset of the complete simulated world. An inherent problem is that while any given selected view is present on the simulation user's viewscreen, information present in other views can not be seen simultaneously. This creates a problem of poor continuity between view modes. Although the many available views are accessible only at the expense of continuity, they are necessary to provide a thorough view of the aircraft, its cockpit, and the outside world. While these display modes tend to alleviate the limited field of view on typical display monitors, handling all of these fractional views becomes a confusing task that increases the workload of the simulation pilot. Furthermore, the command keypresses necessary to accommodate the switching of these view screen modes are arbitrary and inconsistent from one flight simulation to the next. In short, multiple screen modes are a necessary (but very confusing) element of modem computer simulations, because the display area of a single screen simply can not simultaneously show all of the information necessary in order to achieve a high-fidelity simulation of the real world.
Multiple monitor solutions are now possible, wherein a single computer (or network of computers) can drive multiple display screens. In this way, a front view may be rendered on a first screen, while instruments and/or MFDs may be rendered on a second screen, while right, left, and rear views may be rendered on third, fourth, and fifth screens, and so on. This approach, while effective, is computationally expensive, as each physical display requires more and more computing power to illustrate a complex scene simultaneously with the other screens. Furthermore, each screen requires its own video card, and most computers have a limited number of expansion slots with which to accommodate them. In addition, assuming one or more virtual MFDs were displayed on a screen other than main view screen, the simulation pilot would have to look away from the main view, observe the desired virtual MFD on a second screen (likely adjacent to the first), and, upon desiring to see a different view on that same MFD, would have to look back at the keyboard and press an arbitrary mode select key to change the view on the given MFD, and then look back at the given MFD to see the results of that keypress. This is a very inefficient procedure. Some simulations provide “virtual cockpits” which provide polygonal, texture mapped cockpits that can be smoothly rotated around by the simulation pilot, wherein the virtual buttons on the virtual MFDs in the virtual cockpit are active “point and click” devices, where the user can press any given virtual MFD button by clicking on it with a pointing device of some kind. In these “point and click” virtual cockpits, one pointing device services all of the MFDs in the virtual cockpit. In order to actuate any given MFD button, the user has to visually locate the pointer, bring it across the screen area that is situated between the pointer's current location and the desired virtual button on the appropriate virtual MFD, a then “click” the pointing device to actuate the virtual MFD button. This eliminates some confusion by eliminating arbitrary keyboard keypresses, but introduces additional deviation from reality by forcing the user to interact with the virtual MFDs with a pointing icon that floats within the currently selected cockpit view.
The intended benefits of real MFDs are situational awareness and operational efficiency. When a simulation user interacts with the virtual MFDs described above, these benefits are inherently compromised.
OBJECTS AND SUMMARY OF THE INVENTION
The aforementioned problems are alleviated by the present invention which provides a modular and reconfigurable Multi-Function Display (MFD) solution for computer simulations.
It is an object of the present invention to provide relatively small and flat (e.g., five inch diagonal measure TFT LCD) display screens that can display images generated by a computer simulation.
It is a further object of the present invention to allow a shared block of video RAM on a single interface card to generate multiple independent video signal output channels for display on the aforementioned display screens, where the video signal carried on any given video output channel is derived from its own designated subset of the shared video RAM.
It is a further object of the present invention to provide a video signal connection system such that all of the independent video signal output channels are carried independently via single channel video cables to one or more MFDs, where each MFD receives a single video channel.
It is a further object of the present invention to provide a video signal connection system such that all of the independent video signal output channels are carried in parallel via a multi-channel cable to one or more MFDs, where each MFD receives all of the channels but displays a single user selected channel at a time via a channel selection means on eac

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus and method for providing modular reconfigurable... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus and method for providing modular reconfigurable..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus and method for providing modular reconfigurable... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2457647

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.