Electrical computers and digital data processing systems: input/ – Intrasystem connection – Bus access regulation
Reexamination Certificate
1998-09-02
2001-03-06
Lee, Thomas C. (Department: 2782)
Electrical computers and digital data processing systems: input/
Intrasystem connection
Bus access regulation
C710S008000, C710S010000, C710S012000, C710S072000, C710S104000, C710S105000, C709S220000, C709S230000, C709S209000, C709S238000, C709S241000, C709S241000, C709S241000, C709S241000, C709S241000, C370S260000, C370S261000, C370S263000, C370S266000, C370S278000, C370S282000, C370S402000, C370S420000
Reexamination Certificate
active
06199136
ABSTRACT:
FIELD OF THE INVENTION
The invention relates to a home automation system and to a home entertainment system.
BACKGROUND ART
A consortium of consumer electronics manufacturers, among which Royal Philips Electronics, has been working on specifications for a core of API's (application programming interfaces) for digital consumer electronics appliances in a home network so as to provide a standard for the audio/video electronics and the multimedia industries. An API specifies the method required for making requests to an operating system or application program. The home network is considered a distributed computing platform. The primary goal of the standard, referred to as the HAVi (Home Audio/Video interoperability) architecture is to ensure that products of different vendors can interoperate, i.e., cooperate to perform application tasks. Current CE devices, such as home entertainment equipment (DVD players, DV camcorders, digital TV sets, etc.) are digital processing and digital storage systems. Connecting these devices in networks makes it possible to share processing and storage resources. This allows coordinating the control of several CE devices simultaneously, e.g., in order to simplify user-interaction. For example, a first device may instantiate recording on a second device while accessing an EPG (electronic program guide) on a third device. The home network provides the fabric for connecting the CE devices. It allows connected devices to exchange both control (one device sending a command to another) and AV (audio/video) data (one device sending an audio or video stream to another device). The network has to meet several requirements in order to achieve all this. It must support timely transfer of high-data-rate AV streams. The network must support self-configuration, self-management, and hot plug-and-play. It must require low-cost cabling and interfaces.
The HAVi software architecture is platform-independent and based on Java. HAVi uses the IEEE 1394 high-performance serial bus protocol for transport of control and content among the devices connected to the network. The IEEE 1394 standard is a dynamically configurable, low-cost digital network. IEEE 1394 defines both a backplane physical layer and a point-to-point cable-connected virtual bus implementations. The backplane version operates at 12.5, 25 or 50 Mbits/sec. The cable version supports data rates of 100, 200 and 400 Mbits/sec. The standard specifies the media, topology, and the protocol. The IEEE 1394 transport protocol is particularly useful for supporting audio and video communication protocols, due to its high data-rate capability.
The HAVi architecture controls the CE devices in the network through abstract representations of the CE devices. The abstract representations are operated upon by a controller and hide the idiosyncrasies of the associated real CE devices. The abstract representation thus provides a uniform interface for higher levels of software. The abstract representations are registered with their control properties reflecting those of the device represented. The abstract representations expose their Interoperability API's to the applications and collectively form a set of services for building portable, distributed applications on the home network.
The architecture allows a device to send a command or control information to another device in the home network. A HAVi-compliant device contains data (above abstract representation, referred to as Device Control Model or DCM, see further below) relating to its user-interface (e.g., GUI) and to its control capabilities. This data includes, for example, HAVi bytecode (Java) that can be uploaded and executed by other devices on the network. A HAVi-compliant device has, as a minimum, enough functionality to communicate with other devices in the system. During interaction, devices may exchange control and data in a peer-to-peer fashion. This ensures that at the communication level, none of the devices is required to act as the master or controller of the system. On the other hand, it allows a logical master or controller to impose a control structure on the basic peer-to-peer communication model. HAVi distinguishes between controllers and controlled devices as explained further below. A controller is a device that acts as a host for a controlled device. A controller hosts the abstract representation for the controlled device. The control interface is exposed via the API of the abstract representation. This API is the access point for applications to control the device.
HAVi-compliant CE devices are devices categorized as follows: Full-AV devices (FAV's), Intermediate-AV devices (IAV's) and Base-AV devices (BAV's).
An FAV contains a complete set of the software components of the HAVi-software architecture (see below). An FAV is characterized in that it has a runtime environment for HAVi bytecode. This enables an FAV to upload bytecode from other devices for, e.g., providing enhanced capabilities for their control. An FAV may be formed by, e.g., a HAVi-compliant Set Top box, a HAVi-compliant Digital TV receiver, and an home PC. For example, an intelligent TV receiver can be the HAVi controller of other devices connected on the network. The receiver gets the bytecode uploaded from another device for creating a UI for this device and for providing external control of this device. An icon presenting this device can be made to appear on the TV screen and user interaction with the icon may cause elements of the control program to actuate the represented device in a pre-specified manner.
An IAV does not provide a runtime environment for HAVi bytecode, but may provide native support for control of specific devices on the home network. An IAV comprises embedded software elements that provide an interface for controlling general functions of the specific devices. These software elements need not be HAVi bytecode and may be implemented as native applications on the IAV that use native interfaces to access other devices.
A BAV may provide uploadable HAVi bytecode but does not host any of the software elements of the HAVi architecture. A BAV is controllable through an FAV by means of the former's uploaded bytecode. A BAV is controllable through an IAV via the native code. Communication between an FAV or IAV, on the one hand, and a BAV on the other hand requires that the HAVi bytecode be translated to and from the command protocol used by the BAV.
The main software elements included in the core specification of the HAVi architecture are the ones listed below. For a more detailed explanation of these elements, please see the HAVi spec., herein incorporated by reference.
1) A 1394 Communications Media Manager (CMM)—acts as an interface between the other software elements and the IEEE 1394.
2) An Event Manager (EM)—informs the various software elements of events in the network such as the changes in the network configuration that occur when appliances (devices) are added or removed from the network.
3) A Registry—maintains information about the appliances connected to the network and the functions they offer. Applications can obtain this information from the registry.
4) A Messaging System (MS)—serves as an API that facilitates communication between the software elements of the various appliances on the network. The messaging system provides the HAVi software elements with communication facilities. It is independent of the network and the transport layers. A messaging system is embedded in any FAV and IAV. The messaging system is in charge of allocating identifiers for the abstract representations at the FAV or IAV. These identifiers are first used by the abstract representations to register at the FAV or IAV. Then they are used by the abstract representations to identify each other within the home network. When a first abstract representation wants to send a message to another abstract representation it has to use the identifier of the latter while invoking the messaging API.
5) A Device Control Module (DCM)—represents an appliance on the n
Lee Thomas C.
Schuster Katharina
U.S. Philips Corporation
Verdonk Peter
LandOfFree
Method and apparatus for a low data-rate network to be... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for a low data-rate network to be..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for a low data-rate network to be... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2443238