Method for forming crystalline semiconductor layers, a method fo

Semiconductor device manufacturing: process – Making field effect device having pair of active regions... – On insulating substrate or layer

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

438166, 438795, 438486, 438 97, H01L 2100

Patent

active

060665165

DESCRIPTION:

BRIEF SUMMARY
BACKGROUND OF THE INVENTION

1. Field of the Invention
This invention concerns a method for forming crystalline semiconductor layers and a method for fabricating thin film transistors, active matrix liquid crystal devices and solar cells that employ these crystalline semiconductor layers.
2. Description of the Related Art
Polycrystalline silicon and other semiconductor films are used widely in thin film transistors ("TFT" in the specifications of this application) and solar cells. The performance of these semiconductor devices is strongly dependent on the quality of the semiconductor layer, which wholly constitutes the active portion of the semiconductor device. Needless to say, if a high-quality semiconductor layer can be created, a semiconductor device with correspondingly high performance can be produced. For example, in a polycrystalline silicon thin film transistor (poly-Si TFT) used in such products as liquid crystal display devices, the higher the quality of the polycrystalline silicon (poly-Si) layer, the faster the switching speed of the TFT. Likewise, given roughly similar light absorption efficiency, a solar cell having a semiconductor layer with a higher degree of crystallinity will convert energy more efficiently. There is, therefore, strong demand in many industries for high quality crystalline semiconductor layers.
However, the formation of this kind of high quality semiconductor layer is generally difficult to achieve and, moreover, is subject to important limitations. In the field of TFTs, polycrystalline silicon layers having relatively high mobility are formed by fabricating transistors by means of a high temperature process where maximum process temperatures reach about 1000.degree. C. Because of this, semiconductor films and semiconductor devices can be formed only on those substrates having thermal resistance properties that enable them to withstand high temperature processing. For this reason, all of today's poly-Si TFTs are formed on expensive, small quartz glass substrates. For the same reason, amorphous silicon (a-Si) is normally used for solar cells.
Against this backdrop, various research has been conducted on methods of forming high quality semiconductor layers at the lowest temperature possible. Solid-phase crystallization is known as the first such method. In this process, an a-Si film is formed on the substrate and then subjected to annealing at a temperature of approximately 600.degree. C. for a minimum of 10 hours, thereby converting said a-Si film to a poly-Si layer. Laser crystallization is acknowledged to be the second process. In this method, an a-Si film is first deposited and then exposed to laser irradiation, thereby promoting crystallization of the silicon film.
However, the first of the conventional technologies (solid phase crystallization) requires annealing over a long period of time--more than 10 hours--and thus suffers from extremely poor throughput. Moreover, in this process thermal deformation of the substrate arising from prolonged heating of the entire substrate has become a major problem, meaning essentially that inexpensive, large glass substrates cannot be used. The problem with the second of the conventional technologies (laser crystallization) is that crystallization does not progress if the laser irradiation energy is too low, while high energy will damage the semiconductor film. Hence, satisfactory, high quality crystalline films cannot be produced under either of the irradiation conditions. Moreover, extensive nonuniformity in crystallinity is known to occur with each laser irradiation. The result is that even if these semiconductor films are applied in TFTs, for example, good transistor characteristics cannot be obtained.
Accordingly, a third method is being studied, which combines the second of the conventional technologies (laser crystallization) with a variation of the first (furnace annealing). This is a semiconductor film annealing process that is performed after the semiconductor film is crystallized by a laser. In this process the annealin

REFERENCES:
patent: 5827773 (1998-05-01), Voutsas
patent: 5858819 (1999-01-01), Miyasaka
Levinson, J., et al., "Conductivity Behavior in Polycrystalline Semiconductor Thin Film Transistors," J. Appl. Phys. 53(2), Feb. 1982, pp. 1193-1202.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for forming crystalline semiconductor layers, a method fo does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for forming crystalline semiconductor layers, a method fo, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for forming crystalline semiconductor layers, a method fo will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1836352

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.