Methods for identifying pathways of drug action

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or...

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

435 6, 435 912, 435 71, 435288, 536 231, 536 243, 436501, 36452801, 36472501, 720 19, 720 20, C12Q 100, G01N 3353, G06F 1714, C12N 1500

Patent

active

059653523

ABSTRACT:
The present invention provides methods for identifying and representing the biological pathways of drug action on a cell by: (i) measuring responses of cellular constituents to graded exposures of the cell to a drug of interest; (ii) measuring the responses of cellular constituents to perturbations in one or more biological pathways of the cell; and (iii) scaling a combination of the measured pathway responses to fit the measured drug responses best according to an objective measure. In alternative embodiments, the present invention also provides for assessing the significance of the identified representation and for verifying that the identified pathways are actual pathway of drug action. In various embodiments, the effects on the cell can be determined by measuring gene expression, protein abundances, protein activities, or a combination of such measurements. In various embodiments, perturbation to a biological pathway in the cell can be made by use of titratable expression systems, use of transfection systems, modification to abundances of pathway RNAs, modifications to abundances of pathway proteins, or modifications to activities of the pathway proteins. The present invention also provides methods for drug development based on the methods for identifying biological pathways of drug action, and methods for representing the biological pathways involved in the effect of an environmental change upon a cell.

REFERENCES:
patent: 5445934 (1995-08-01), Fodor et al.
patent: 5569588 (1996-10-01), Ashby et al.
patent: 5645988 (1997-07-01), Vande Woude et al.
patent: 5744305 (1998-04-01), Fodor et al.
patent: 5777888 (1998-07-01), Rine et al.
patent: 5800992 (1998-09-01), Fodor et al.
patent: 5811231 (1998-09-01), Farr et al.
Ecker et al, "Estimation of the chemosensitizing activity of modulators of multi-drug resistance via combined simultaneous analysis of sigmoidal dose response curves", J. Pharm. Pharmacol. 49:305-309, Mar. 1997.
Uhlmann et al, "Antisense oligonucleotides: A new therapeutic principle", Chemical Reviews 90(4):543-584, Jun. 1990.
Anderson et al., 1994, "Involvement of the protein tyrosine kinase p56.sup.Ick in T cell signalling and thymocyte development", Adv. Immunol. 56:151-178.
Baudin et al., 1993, "A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae", Nucl. Acids Res. 21:3329-3330.
Belshaw et al., 1996, "Controlling protein association and subcellular localization with a synthetic ligand that induces heterodimerization of proteins", Proc. Natl. Acad. Sci. USA 93:4604-4607.
Biocca, 1995, "Intracellular immunization: antibody targeting to subcellular compartments", Trends in Cell Biology 5:248-253.
Blanchard et al., 1996, "Sequence to array: probing the genome's secrets", Nature Biotechnology 14:1649.
Blanchard et al., 1996, "High-density oligonucleotide arrays", Biosensors & Bioelectronics 11:687-690.
Chee et al., 1996, "Accessing genetic information with high-density DNA arrays", Science 274:610-614.
Cotten and Birnstiel, 1989, "Ribozyme mediated destruction of RNA in vivo", EMBO J. 8:3861-3866.
Dohmen et al., 1994, "Heat-inducible degron: a method for constructing temperature-sensitive mutants", Science 263:1273-1276.
Gari et al., 1997, "A set of vectors with a tetracycline-regulatable promoter system for modulated gene expression in Saccharomyces crevisiae", Yeast 13:837-848.
Goffreau et al., 1996, "Life with 6000 genes", Science 274:546-567.
Gossen and Bujard, 1992, "Tight control of gene expression in mammalian cells by tetracycline-responsive promoters", Proc. Natl. Acad. Sci. USA 89:5547-5551.
Gossen et al., 1995, "Transcriptional activation by tetracyclines in mammalian cells" Science 268:1766-1769.
Guo et al., 1994, "Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports", Nucl. Acids Res. 22:5456-5465.
Hanke et al., 1996, "Discovery of a novel, protent, and Src family-selective tyrosine kinase inhibitor", J. Biol. Chem. 271:695-701.
Hartwell et al., 1997, "Integrating genetic approaches into the discovery of anticancer drugs", Science 278:1064-1068.
Hayden et al., 1997, "Antibody engineering", Curr. Opin. Immunol. 9:201-212.
Herskowitz, 1987, "Functional inactivation of genes by dominant negative mutations", Nature 329:219-222.
Hoffmann et al., 1997, "A novel tetracycline-dependent expression vector with low basal expression and potent regulatory properties in various mammalian cell lines" Nucl. Acids Res. 25:1078-1079.
Johnston and Davis, 1984, "Sequences that regulate the divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae", Mol. Cell. Biol. 4:1440-1448.
Kerjan et al., 1986, "Nucleotide sequence of Saccharomyces cerevisiae MET25 gene", Nucl. Acids Res. 14:7861-7871.
Lander, 1996, "The new genomics: Global views of biology", Science 274:536-539.
Lennon and Lehrach, 1991, "Hybridization analyses of arrayed cDNA libraries" TIG 7:314-317.
Mascorro-Gallardo et al., 1996, "Construction of a CUP1 promoter-based vector to modulate gene expression in Saccharomyces cerevisiae", Gene 172:169-170.
Matheos et al., 1997, "Tcn1p/Crz1p, a calcineurin-dependent transcription factor that differentially regulates gene expression in Saccharomyces cerevisiae", Genes & Dev. 11:3445-3458.
McAdams and Shapiro, 1995, "Circuit simulation of genetic networks", Science 269:650-656.
Mikulecky, 1990, "Modeling intestinal absorption and other nutrition-related processes using PSPICE and STELLA", J. Ped. Gastroenterol. Nutr. 11:7-20.
Mounts and Liebman, 1997, "Qualitative modeling of normal blood coagulation and its pathological states using stochastic activity networks", Int. J. Biol. Macromolecules 20:265-281.
Murmberg et al., 1994, "Regulatable promoters of Saccharomyces cerevisiae: Comparison of transcriptional activity and their use for heterologous expression", Nucl. Acids. Res. 22:5767-5768.
Nguyen et al., 1995, "Differential gene expression in the murine thymus assayed by quantitative hybridization of arrayed cDNA clones", Genomics 29:207-216.
No et al., 1996, "Ecdysone-inducible gene expression in mammalian cells and transgenic mice", Proc. Natl. Acad. Sci. USA 93:3346-3351.
Nocka et al., 1990, "Molecular bases of dominant negative and loss of function mutations at the murine c-kit/white spotting locus: W.sub.37, W.sup.v, W.sup.41 and W", EMBO J. 9:1805-1813.
Oliff and Friend, 1997, "Cancer, principles & practice of oncology, molecular targets for drug development", Mol. Pharmacol. 68:3115-3125.
Perimutter and Alberola-IIa, 1996, "The use of dominant-negative mutations to elucidate signal transduction pathways in lymphocytes", Curr. Opin. Immunol. 8:285-290.
Polyak et al., 1997, "A model for p53-induced apoptosis", Nature 389:300-306.
Reinitz and Sharp, 1995, "Mechanism of eve stripe formation", Mech. Dev. 49:133-158.
Schena, 1996, "Genome analysis with gene expression microarrays", BioEssays 18:427.
Schena et al., 1996, "Parallel human genome analysis: microarray-based expression monitoring of 1000 genes", Proc. Natl. Acad. Sci. USA 93:10614-10619.
Schena et al., 1995, "Quantitative monitoring of gene expression patterns with a complementary DNA microarray", Science 270:467-470.
Shalon et al., 1996, "A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization", Genome Research 639-645.
Shiue, 1997, "Identification of candidate genes for drug discovery by differential display", Drug Dev. Res. 41:142-159.
Shoemaker et al., 1996, "Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy", Nature Genetics 14:450-456.
Southern, 1996, "DNA chips: analysing sequence by hybridization to oligonucleotides on a large scale", TIG 12:110-115.
Spencer, 1996, "Creating conditional mutations in mammals", TIG 12:181-187.
Stathopoulos and Cyert,,, 1997, "Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast", Genes & Dev. 11:3432-3444.
Straus and Weiss, 1992, "Genetic evidence for the involvement of the Ick tyrosine kinase in signal transduc

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Methods for identifying pathways of drug action does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Methods for identifying pathways of drug action, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Methods for identifying pathways of drug action will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-650882

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.