Boots – shoes – and leggings
Patent
1995-06-23
1998-05-05
Teska, Kevin J.
Boots, shoes, and leggings
364481, 364151, 36457102, 395 3, G05B 1304, G06F 1715
Patent
active
057485089
ABSTRACT:
Method and device for modelling the variables relevant to a process as a function of other parameters describing or influencing the process, termed regressors, by means of multiple regression for the purpose of process identification, monitoring, analysis and control or regulation. The classical method of stepwise multiple regression is expanded by the introduction of the so-called collinearity cone into a recursive method yielding all "best" collinearity-free regression models. The method is completed by giving consideration to the regression errors and by restriction to the absolutely necessary matrix elements. Stable regression models of various sizes are thus produced with little expenditure of time. Further, either linear or nonlinear regression functions permit a more accurate process analysis or modelling. By automatic learning in the case of newly occurring combinations of regressive values, it is also possible to apply the process to process monitoring, control and regulation.
REFERENCES:
patent: 4435770 (1984-03-01), Shiohata et al.
patent: 4730257 (1988-03-01), Szeto
patent: 4901244 (1990-02-01), Szeto
patent: 5099436 (1992-03-01), McCown et al.
patent: 5237642 (1993-08-01), Carayannis et al.
patent: 5249257 (1993-09-01), Akahori et al.
patent: 5257206 (1993-10-01), Hanson
patent: 5408405 (1995-04-01), Mozumder et al.
patent: 5459677 (1995-10-01), Kowalski et al.
patent: 5519647 (1996-05-01), De Ville
patent: 5568400 (1996-10-01), Stark et al.
Zoubir, "Backward Elimination Procedures for Testing Multiple Hypotheses: Application to Optimal Sensor Location", ICASSP '94: Acoustics, Speech & Signal Processing, vol. 4, pp. 565-568 (IEEE Publication).
Zoubir, "Backward Elimination and Stepwise Regression Procedures for Testing Sensor Irrelevancy", Signals, Systems, & Computers, 1993 27th Asilomar Conf., pp. 538-542.
Berk, Kenneth N., Tolerance and Condition in Regression Computations, Journal of the American Statistical Association, Dec. 1977, vol. 72, No. 360, pp. 863-866.
Box, G.E.P., Use and Abuse of Regression, Technometrics, vol. 8, No. 4, pp. 625-629, Nov. 1966Bunke H., O.
Bunke, Ed., Nonlinear Regression, Functional Relations and Robust Methods, vol. II, Ch. 3, John Wiley & Sons.
.fwdarw. Chatterjee Samprit, Glenn Heller, The Num. Effect of Measurement Error in the Explanatory Variables on the observed Least Squares Estimate, SIAM J. Matrix Anal. Appl., vol. 14, No. 3, pp. 677-687, Jul. 1993.
Cherkassky V. et al., Self-Organizing Network for Regression: Efficient Implementation and comparative evaluation, International Joint Conference on Neural Networks, IEEE Press New York Bd. 1, Jul. 1991, Seattle, pp. 79-84.
Draper N.R., H. Smith, Applied regression analysis, John Wiley & Sons 1981, ch. 6 (includes pp. 344-349).
Draper N.R., H. Smith, Applied regression analysis, John Wiley & Sons 1981, ch. 8.
Draper N.R., H. Smith, Applied regression analysis, John Wiley & Sons 1981, ch. 10.
Drobniak S., W. Elsner, The Multiregression Identification Algorithm for the Condition Monitoring of Turbomachinery, 8th International IMEKO Symposium on Technical Diagnostics, Sep. 23-25, 1992, Dresden, pp. 319-328.
Efroymson M.A., Mehrfache Regressionsanalyse, ch. 17 in A. Ralston, H.S. Wilf, Ed., Mathematische Methoden fur Digitalrechner, R. Oldenbourg Verlag 1967, pp. 345-362.
.fwdarw. Farrar Donald E., Robert R. Glauber, Multicollinearity in Regression Analysis: The problem revisited, Review of Economics and Statistics, vol. 49 (1967), pp. 92-107.
Frane James W., A Note on Checking Tolerance in Matrix Inversion and Regression, Technometrics, vol. 19, No. 4, Nov. 1977, pp. 513-514.
Hocking R.R., The Analysis and Selection of Variables in Linear Regression, Biometrics 32, pp. 1-49, Mar 1976.
Krzyak Adam, Global convergence of the Recursive Kernel Regression Estimates with Applications in Classification and Nonlinear System Estimation, IEEE Transactions on Information Theory, Bd. 38, Nr. 4, Jul. 1992, New York.
.fwdarw. Mandel John, The Regression Analysis of Collinear Data, Journal of Research of the National Bureau of Standards, vol. 90, Nr. 6, Nov.-Dec. 1985.
.fwdarw. Mason Robert, L., R.F. Gunst, J.T. Webster, Regression analysis and problems of multicollinearity, Communications in Statistics, 4(3), (1975), pp. 277-292.
Mullet Gary, M., Why Regression Coefficients Have the Wrong Sign, Journal of Quality Technology, vol. 8, No. 3, pp. 121-126, Jul. 1976.
.fwdarw. Newton R.G., D.J. Spurrell, A Development of Multiple Regression for the Analysis of Routine Data, Applied Statistics, 16, 1976, pp. 51-65.
Pawlak M. et al., On non-parametric estimation of a cascade nonlinear system by the kernel regression estimate, Proceedings of the 1991 IEEE International Symposium on Information Theory, IEEE Press New York, Jun. 1991, Budapest.
Schneeweiss H., H.-J. Mittag, Lineare Modelle mit fehlerbehafteten Daten, Physica-Verlag Heidelberg Wien, 1986.
Seitz, M., A. Kunz, H. Tolle, Lernende Regelung von Totzeitprozessen, Automatisierungstechnik 41, vol. 9, pp. 323-331, 1993.
Shannon, CO. Clare, IRL, A PC Program to aid in the choice of the design matrix in multiple linear regression, Int. Journal of Biomedical Computing, Elsevier Scientific Publishers, Bd. 33, Nr. 1, Jul. 1993, pp. 1-23.
.fwdarw. Snee Ronald D., Some Aspects of Nonorthogonal Data Analysis, Part I. Developing Prediction Equations, Journal of Quality Technology, vol. 5, No. 2, Apr. 1973.
Spanias, A. et al., Block Time and Frequency Domain Modified Covariance Algorithms, Proceedings of ICASSP 92, IEEE Press New York, Bd. 5 Marz 1992, San Francisco, pp. 529-532.
Suoranta Risto et al., Utilizing Multivariate Autoregressive Model to reveal internal dependencies in Multichannel Measurement Data, Proceedings of IEEE Conference on Instrumentation and Measurement Technology, May 1991, Atlanta pp. 315-318.
Weigel Manfred, J. Boetius, Rechnergestutzte schwingungsdiagnostische Uberwachung von Kraftwerksturbosatzen, VDI-Berichte Nr. 846, VDI-Verlag, Dusseldorf, 1990.
.fwdarw. Willan A.R., D.G. Watts, Meaningful Multicollinearity Measures, Technometrics, vol. 20, No. 4, Nov. 1978, pp. 407-412.
* * * , NTIS Foreign Technology Series, US Department of Commerce, vol. PB82, Nr. 9707, 1982: 'REGPAC: A Statistical Regression Package.
Teska Kevin J.
Walker Tyrone V.
LandOfFree
Method and device for signal analysis, process identification an does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and device for signal analysis, process identification an, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and device for signal analysis, process identification an will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-62175