Mucosal administration of pneumococcal antigens

Drug – bio-affecting and body treating compositions – Antigen – epitope – or other immunospecific immunoeffector – Bacterium or component thereof or substance produced by said...

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

424 9344, 4241841, 424282, 4242821, 424289, 4242891, A61K 3909, A61K 3900, A01N 6300

Patent

active

060277343

ABSTRACT:
Mucosal administration, particularly intranasally, of killed whole pneumococci, lysate of pneumococci and isolated and purified PspA, as well as immunogenic fragments thereof, particularly when administered with cholera toxin B subunit, provides protection in animals against pneumococcal colonization and systemic infection. The ability to elicit protection against pneumococcal colonization in a host prevents carriage among immunized individuals, which can lead to elimination of disease from the population as a whole.

REFERENCES:
patent: 4873890 (1989-10-01), Clancey et al.
patent: 5182109 (1993-01-01), Tamura et al.
Anonymous. Centers for Disease Control HIV/AIDS Serveillance Report. 1991; Aug. :1-18.
Fraser DW. What are our bacterial disease problems. In: JB Robbins, Hill JC, Sadoff JC ed. Bacterial Vaccines. New York: 1982: xix-xxiv.
Berman S. McIntosh K. Selective primary health care: stratagies for control of disease in the developing world. XXI acute respiratory infections. Rev. Infect. Dis. 1985; 7 :647-491.
Greenwood BM, Greenwood AM, Bradley AK, Tulloch S, Hayes R, Oldfield FSJ. Deaths in infancy and early childhood in a well vaccinated, rural, West African population. Ann. Trop. Pediatr. 1987; 7 :91-99.
Spika JS, Munshi MH, Wojtyaniak B, Sack DA, Hossain A, Rahman M, Saha SK. Acute lower respiratory infections: a major cause of death in children in Bangladesh. Ann. Trop. Pediatr. 1989; 9 :33-39.
Bale Jr. Etiology and epidemiology of acute respiratory tract infections in children in developing countries. Rev. Infect. Dis. 1990; 12 (Suppl 8) :S861-S1083.
Munoz R, Musser JM, Crain M, Briles DE, Marlon A, Parkinson AJ, Sorensen U, Tomasz A. Geographic distribution of penicillin-resistant clones of Streptococcus pneumoniae: characterization by penicillin-binding protein profile, surface protein A typing, and multilocus enzyme analysis. Clinic. Infect. Dis. 1992; 15 :112-118.
Marton A, Gulyas M, Munoz R, Tomasz A. Extremely high incidence of antibiotic resistance in clinical isolates of Streptococcus pneumoniae in Hungary. J. Infect. Dis. 1991; 163 :542-548.
Klugman KP. Pneumococcal resistance to antibiotics. Clin. Microbiol. Rev. 1990.
Gray BM, Converse GM III, Dillon HC. Epidemiologic studies of Streptococcus pneumoniae in infants: acqusition, carriage, and infection during the first 24 months of life. J. Infect. Dis. 1980; 142 :923-933.
Gray BM, Converse GM III, Huhta N, Johnston RB Jr., Pichichero ME, Schiffman G, Dillon HC Jr. Antibody response to pneumococcal carriage. J. Infect. Dis. 1981; 142 :312-318.
Hendley JO, Sande MA, Stewart PM, et al, Spread of Stereptococcus pneumoniae in families. I. Carriage rates and distribution of types. J. Infect. Dis. 1975; 132 :55.
Smillie WG, Warnock GH, White HJ. A study of a type I pneumococcus epidemic at state hospital at Worchester Massachusettes. Am J Pub Hlth 1938; 28 :293-302.
Smillie WG. A study of an outbreak of type II pneumococcal pneumonia in the Veterans Administration Hospital at Bedford, Massachusetts. Am. J. Hyg. 1936; 24 :522-535.
Gratten M, Naraqi S, Hansman D. High prevalence of penicillin-insensitive penumococci in port moresby, Paupa New Guinea. Lancet 1980; ii :192-195.
DeMaria TF, McGhee RB, Lim DJ. Rheumatoid factor in otitis media with effusion. Arch. Otolaryngol. 1984; 110:279-280.
Bohr V, Rasmussen N, Hansen B, Gade A, Kjersem H, Johsen N, Paulson O. Pheumococcal meningitis: An evaluation of prognostic factors in 164 cases based on mortality and on a study of lasting sequelae. J. Infect. Dis. 1985; 10:143-157.
Klein JO. The epidemiology of pneumococcal diseases in infants and children. Rev. Infect. Dis. 1981; 3 :246.
Bolan G, Broome CV, Facklam RR, Plikaytis BD, Fraser WD, Schlech WFI. Pneumococcal vaccine efficacy in selected populations in the United States. Ann. Intern. Med. 1986; 104 :1-6.
Shapiro ED, Berg AT, Austrian R, Schroeder D, Parcells V, Margolis A, Adair RK, Clemmens JD. Protective efficacy of polyvalent pneumococcal polysaccharide vaccine. N. Engl. J. Med 1991; 325 :1453-1460.
Cowan MJ, Ammann AJ, Wara DW, Howie VM, Schultz L, Doyle N, Kaplan M. Pneumococcal polysaccharide immunization in infants and children. Pediatrics 1978; 62:721-727.
Gotschlich EC, Goldschneider I, Lepow ML, Gold R. The immune response to bacterial polysaccharides in man. Antibodies in human diagnosis and therapy.. New York: Raven, 1977: 391-402.
Barbour ML, Mayon-White RT, Crook DW, Coles C, Moxon ER. The influece of Haemophilus influenzae type b (HIB) conjugate vaccine (PRP-T) on oropharyngeal carriage of Hib in infants under 12 months of age. ICAAC Abstracts 1993; 33 :175.
Chiu SS, Greenberg PD, Marcy SM, Wong VK, Chang SJ, Chiu CY, Ward JI. Mucosal antibody responses in infants following immunization with Haemophilus influenzae. Pediatric Res. Abstracts 1994; 35 :10A.
Fallon MT, Reinhard MK, Gray BM, Davis TW, Lindsey JR, Inapparent Streptococcus pneumoniae type 35 infections in commercial rats and mice. Laboratory Animal Science 1988; 38 :129.
Douglas RM, D H, Miles HB, Paton JC. Pneumococcal carriage and type-specific antibody Failure of a 14-valent vaccine to reduce carriage in healthy children. American Journal of Diseases of Children 1986; 140 :1183-1185.
Douglas RM, Miles HB. Vaccination against Streptococcus pneumoniae in childhood: lack of demonstrable benefit in young Australian children. Journal of Infectious Diseases 1984; 149 :861-869.
Mestecky J. The common mucosal immune system and current strategies for induction of immune response in external secretions. J. Clin. Immunol. 1987; 7 :265-276.
Croitoru K, Bienenstock J. Characteristics and functions of mucosa-associated lymphoid tissue. In: PL Ogra, Mestecky J, Lamm ME, Strober W, McGhee JR, Bienenstock J ed. Handbook of Mucosal Immunology. San Diego, CA: Academic Press, Inc., 1994: 141-149.
Bienenstock J, Johnston N, Perey DY. Bronchial lymphoid tissue. I. Morphologic characteristics. Lab. Invest. 1973; 28 :686-692.
Bienenstock J, Johnston N, Perey DY. Bronchial lymphoid tissue. II. Functional characteristics. Lab. Invest. 1973; 28 :693-698.
Pabst R. Is BALT a major component of the human lung immune system? Immunology Today 1992; 13 :119-122.
Kuper CF, Koornstra PJ, Hameleers DMH, Biewenga J, Spit BJ, Duijvestijn AM, van Breda Vriesman PJC, Sminia T. The role of nasopharyngeal lymphoid tissue. Immunol. Today 1992; 13 :219-224.
Wu H-Y, Russell MW. Induction of mucosal immunity by intranasal application of a streptococcal surface protein antigen with the cholera toxin B subunit. Infection and Immunity 1993; 61 :314-322.
Russell MW, Wu H-Y. Distribution, persistence, and recall of serum and salivary antibody responses to peroral immunization with protein antigen I/II of Streptococcus mutants coupled to the cholera toxin B sununit. Infection and Immunity 1991; 59 :4061-4070.
Elson, CO, Ealding W. Generalized systemic and mucosal immunity in mice after mucosal stimulation with cholera toxin. J. Immunol. 1984; 132 :2736-2741.
Elson CO. Cholera toxin and its subunits as potential oral adjuvants. Curr. Topics Microbiol. Immunol. 1989; 146:29-33.
Lycke N, Holmgren J. Strong adjuvant properties of cholera toxin on gut mucosal immune responses to orally presented antigens. Immunology 1986; 59 :301-308.
Wilson AD, Stokes CR, Bourne FJ. Adjuvant effect of cholera toxin on the mucosal immune response to soluble proteins. Differences between mouse strains and protein antigens. Scand. J. Immunol. 1989; 29 :739-745.
Wilson AD, Clarke CJ, Stokes CR. Whole cholera toxin and B subunit act synergistically as an adjuvant for the mucosal immune response of mice to keyhole limpet haemocyanin. Scand. J. Immunol. 1990; 31 :443-451.
Czerkinsky C, Russell MW, Lycke N, Lindblad M, Holmgren J. Oral administration of a streptococcal antigen coupled to cholera toxin B subunit evokes strong antibody responses in salivary glands and extramucosal tissues. Infect. Immun. 1989; 57 :1072-1077.
Holmgren J, Lycke N, Czerkinsky C. Cholera toxin and cholera B subunit as oral-mucosal adjuvant and antigen vector systems. Vaccine 1993; 11 :1179-1184.
Quiding M, Nordstrom I, Kilander A, Anderso

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Mucosal administration of pneumococcal antigens does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Mucosal administration of pneumococcal antigens, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Mucosal administration of pneumococcal antigens will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-518237

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.