Process for the selective preparation of acetic acid using a mol

Organic compounds -- part of the class 532-570 series – Organic compounds – Carboxylic acids and salts thereof

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

502313, 502321, 502333, 562549, C07C 5116, B01J 2303

Patent

active

060342706

DESCRIPTION:

BRIEF SUMMARY
The present invention relates to a process for the selective preparation of acetic acid by catalytic gas-phase oxidation of ethane and/or ethylene in the presence of a palladium-containing catalyst.
The oxidative dehydrogenation of ethane to ethylene in the gas phase at temperatures of >500.degree. C. is known, for example from U.S. Pat. Nos. 4,250,346, 4,524,236 and 4,568,790.
Thus, U.S. Pat. No. 4,250,346 describes the use of a catalyst composition comprising the elements molybdenum, X and Y in the ratio a:b:c for converting ethane into ethylene, where X is Cr, Mn, Nb, Ta, Ti, V, and/or W and Y is Bi, Ce, Co, Cu, Fe, K, Mg, Ni, P, Pb, Sb, Si, Sn, Tl and/or U and a is 1, b is from 0.05 to 1 and c is from 0 to 2. The total value of c for Co, Ni and/or Fe must here by less than 0.5.
The reaction is preferably carried out in the presence of added water. The disclosed catalysts can likewise be used for the oxidation of ethane to give acetic acid, with the efficiency of the conversion to acetic acid being about 18%, at an ethane conversion of 7.5%.
The abovementioned documents are concerned mainly with the preparation of ethylene, less with the target preparation of acetic acid.
In contrast, EP-B-0 294 845 describes a process for the selective preparation of acetic acid from ethane, ethylene or mixtures thereof using oxygen in the presence of a catalyst mixture comprising at least A.) a calcined catalyst of the formula Mo.sub.x V.sub.y or Mo.sub.x V.sub.y Z.sub.y, where Z is one or more of the metals Li, Na, Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg, Sc, Y, La, Ce, Al, Tl, Ti, Zr, Hf, Pb, Nb, Ta, As, Sb, Bi, Cr, W, U, Te, Fe, Co and Ni, and x is from 0.5 to 0.9, y is from 0.1 to 0.4 and z is from 0.001 to 1, and B.) an ethylene hydration catalyst and/or ethylene oxidation catalyst. The second catalyst component B is, in particular, a molecular sieve catalyst or a palladium-containing oxidation catalyst. When the catalyst mixture described is used and a gas mixture comprising ethane, oxygen, nitrogen and water vapor is passed through the catalyst-containing reactor, the maximum selectivity is 27% at an ethane conversion of 7%.
A further process for preparing a product comprising ethylene and/or acetic acid is described in EP-B-0 407 091. Here, ethane and/or ethylene and a gas comprising molecular oxygen is brought into contact at elevated temperature with a catalyst composition comprising the elements A, X and Y. A is here Mo.sub.d Re.sub.e W.sub.f, X is Cr, Mn, Nb, Ta, Ti, V and/or W and Y is Bi, Ce, Co, Cu, Fe, K, Mg, Ni, P, Pb, Sb, Si, Sn, Tl and/or U. The maximum selectivities which were able to be achieved when using the catalyst described in the oxidation of ethane to acetic acid are 78%. Further by-products formed are carbon dioxide, carbon monoxide and ethylene.
However, none of the publications listed above describes the use of a catalyst comprising the elements rhenium, palladium and molybdenum for the selective oxidation of ethane and/or ethylene to give acetic acid. Furthermore, the selectivities achieved up to now in the prior art for the oxidation to acetic acid are still not satisfactory.
It is therefore an object of the invention to provide a process which allows ethane and/or ethylene to be oxidized in a simple and targeted manner and with high selectivity to give acetic acid.
It has now surprisingly been found that use of a catalyst comprising the elements molybdenum, rhenium and palladium and one or more elements selected from the group consisting of chromium, manganese, niobium, tantalum, titanium, vanadium and/or tungsten makes it possible to oxidize ethane and/or ethylene under relatively mild conditions, in a simple manner with high selectivity to give acetic acid.
The present invention accordingly provides a process for the selective preparation of acetic acid from a gaseous feed comprising ethane, ethylene or mixtures thereof plus oxygen at elevated temperature, which comprises bringing the gaseous feed into contact with a catalyst comprising the elements Mo, Pd, Re, X and Y in gram atom ratios

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for the selective preparation of acetic acid using a mol does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for the selective preparation of acetic acid using a mol, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for the selective preparation of acetic acid using a mol will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-364695

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.