Method for depinning the Fermi level of a semiconductor at...

Active solid-state devices (e.g. – transistors – solid-state diode – Thin active physical layer which is – Tunneling through region of reduced conductivity

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S485000

Reexamination Certificate

active

07084423

ABSTRACT:
An electrical device in which an interface layer is disposed between and in contact with a metal and a Si-based semiconductor, the interface layer being of a thickness effective to depin of the Fermi level of the semiconductor while still permitting current to flow between the metal and the semiconductor. The interface layer may include a layer of a passivating material (e.g., made from nitrogen, oxygen, oxynitride, arsenic, hydrogen and/or fluorine) and sometimes also includes a separation layer. In some cases, the interface layer may be a monolayer of a semiconductor passivating material. The interface layer thickness corresponds to a minimum specific contact resistance of less than or equal to 10 Ω-μm2or even less than or equal to 1 Ω-μm2for the electrical device.

REFERENCES:
patent: 3590471 (1971-07-01), Lepselter et al.
patent: 3708360 (1973-01-01), Wakefield, Jr. et al.
patent: 3983264 (1976-09-01), Schroen et al.
patent: 4056642 (1977-11-01), Saxena et al.
patent: 4300152 (1981-11-01), Lepselter
patent: 4485550 (1984-12-01), Koeneke et al.
patent: 4583110 (1986-04-01), Jackson et al.
patent: 5021365 (1991-06-01), Kirchner et al.
patent: 5098859 (1992-03-01), Jackson et al.
patent: 5399206 (1995-03-01), de Lyon
patent: 5578848 (1996-11-01), Kwong et al.
patent: 5596218 (1997-01-01), Soleimani et al.
patent: 5612567 (1997-03-01), Baliga
patent: 5663584 (1997-09-01), Welch
patent: 5801398 (1998-09-01), Hebiguchi
patent: 5888891 (1999-03-01), Gould
patent: 5939763 (1999-08-01), Hao et al.
patent: 6037605 (2000-03-01), Yoshimura
patent: 6096590 (2000-08-01), Chan et al.
patent: 6150286 (2000-11-01), Sun et al.
patent: 6198113 (2001-03-01), Grupp
patent: 6207976 (2001-03-01), Takahashi et al.
patent: 6261932 (2001-07-01), Hulfachor
patent: 6291866 (2001-09-01), Wallace et al.
patent: 6291867 (2001-09-01), Wallace et al.
patent: 6303479 (2001-10-01), Snyder
patent: 2003/0127700 (2003-07-01), Moddel et al.
patent: 0 295 490 (1988-05-01), None
patent: 0 789 388 (1996-08-01), None
M.C. Gilmer et al., “Process and Manufacturing Challenges for High-K Gate Stack Systems”, Mat. Res. Soc. Symp. Proc. vVol. 567, (1999), pp. 323-341.
John P. Snyder et al., “Experimental Investigation of a PtSi Source and Drain Field Emission Transistor”, American Institute of Physics, pp. 1-3.
Chung-Kuang Huang, Wei E. Zhang and C. H. Yang, “Two-Dimensional Numerical Simulation of Schottky Barrier MOSFET with Channel Length to 10 nn”, IEEE, pp. 842-848.
S. Hara et al., “Control of Schoffky and Ohmic Interfaces by Unpinning Fermi Level”, Elsevier Science B.V., pp. 394-399.
S. Hara et al., Pinning-Controlled Ohmic Contacts: Application to SiC(0001), Elsevier Science B.V., pp. 218-221.
S. Hara, et al., “Pinning-Controlled Metal/Semiconductor Interfaces”, Electrotechnical Laboratory, pp. 802-807.
http://www.rciqu.hokudai.ac.ip/RCIQEold/ResearchAchievements.html, downloaded on Apr. 12, 2002.
I. Shalish et al., “Yellow Luminescence and Fermi Level Pinning in GaN Layers”, American Institute of Physics, vol. 77, No. 7, (Aug. 14, 2000) pp. 987-989.
Andreas Mandelis and R. Arief Budiman, “Evidence of a Surface Acceptor State in Undoped Semi-Insulating GaAs by Photothermal Radiometric Deep Level Transient Spectroscopy”, Sociedad Mexicana de Ciencias de Superficies y de Vacio, (1999) pp. 13-17.
Takhee Lee, Jai Liu, Nien-Po Chen, R.P. Andreas, D.B. Janes, and R. Reifenberger; “Electronic Property of Metallic Nanoclusters on Semiconductor Surfaces: Implications for Nanoelectronic Device Applications”; Journal of Nanoparticle Research 2; pp. 345-362; 2000.
Y.K. Kim and Sehun Kim; “Metal-Dependent Fermi-Level Movement in the Metal/Sulfer-Passivated InGaP Contact”; J. Vac Sci. Technol. A 15(3); pp. 1124-1128; May/Jun. 1997.
Hideki Hasegawa, Taketomo Sate, Seiya Kasai; “Unpinning of Fermi Level in Nanometer-Sized Schottky Contacts on GaAs and InP”; Research Center for Interface Quantum Electronics and Graduate School of Electronics and Info. Eng, Hokkaido Univ., Japan; pp. 92-96; 2000.
P. Bauernschmitt et al; “Yb-Si02-Si Tunneling Junctions”; Elsevier Publishers B.V.; pp. 105-108; 1993.
Naoya Okamoto, Tsuyoshi Takahshi, Tanaka & Masahiko Takikawa; “Near-Ohmic Contact of n-GaAs with Ga/GaAs Qualsi-Metal-Insulator-Semiconductor Structure”; Jpn. J. Appl. Phys., vol. 37 (1998) pp. 32483251.
J. Tersoff; “Schottky Barrier Heights and the Continuum of Gap States” Physical Review Letters, vol. 52, No. 6; Feb. 6, 1984; AT &T Bell Lab., Murphy Jill, New Jersey 07974.
Volker Heine; “Theory of Surface States”; Physical Review Letters, vol. 138 No. 6A, Jun. 4, 1965; Tell Telephone Lab., Murphy Jill, New Jersey.
Steven G. Louie, James R. Chelokowsky, Marvin L. Cohen; “Ioncity and the Theory of Schottky Barriers”; Physical Review Letters, vol. 15 No. 4, Feb. 15, 1977; Dept. of Phys. Univ. of California, and Materials and Molecular Research Div., Lawrence Berkley Lab., Berkley, CA 94720.
W.E. Spicer, I. Lindau, P. Skeath, C.Y. Su, Patrick Chye; “Unified Mechanism for Schottky-Barrier Formation and III-V Oxide Interface States”; Physical Review Letters, vol. 44, No. 6, Stanford Electronics Lab., Stanford Univ., Stanford, CA 94305; Feb. 11, 1980, pp. 420-423.
D..J. Chadi, P.H. Citrin, C.H. Park, D.L. Adler, M.A. Marcus, H.J. Gossman; “Fermi-Level-Pinning Defects in Highly n-Doped Silicon”; Physical Review Letters, vol. 79, No. 24, Dec. 1997; NEC Research Institute, Princeton, New Jersey 08540-6634; pp. 4834-4837.
R.A. McKee, F.J. Walker, M.F. Chisholm; “Physical Structure and Inversion Charge at a Semiconductor Interface with a Crystalline Oxide”; www.sciencemag.org, vol. 293; Jul. 20, 2001; pp. 468-469.
F.A. Padovani; “Forward Voltage-Current Characteristics of Metal-Silicon Schottky Barriers”; Texas Instruments, Inc., Dallas Texas; Sep. 15, 1966; pp. 892-892.
R.T. Tung; Electron Transport of Inhomogeneous Schottky Barriers; AT & T Bell Lab., Murray hill, New Jersey 07974; Mar. 21, 1991; 3832-3834.
M. Miyawak, I S. Yoshitake, Tadahiro Ohmi; “Improvement of Aluminum-Si Contact Performance in Native-Oxide-Free Processing”; IEEE Electron Device Letters, vol. 11, No. 10, Oct. 1990; pp. 448-450.
Mitsuteru Kinura; Tadashi Matusadate; “A New Type of Schottky Tunnel Transistor”; IEEE Electron Device Letters, vol. 15, No. 10; Oct. 1994; pp. 412-414.
Feng-Jung Huang, K.K.O.; “Metal-Oxide Semiconductor field-Effect Transistors Using Schottky Barrier Drains”; Electronics Letters, vol. 33, No. 15; Jul. 17, 1997; pp. 1341-1342.
Lie Wang and M.I. Nathan; “High BARRIER GaN Schottky Diodes: Pt/GaN and Pd/GaN”; Dept. of Electrical Eng., Univ. of Minnesota, Minneapolis, Minnesota 55455; Appl. Phys. Letters, vol. 68 (9); Feb. 26, 1996, pp. 1257-1270.
B.J. Zhang, T. Egawa, G. Y. Zhao, H. Ishikawa, M. Umeno; “Schottky Diodes of Ni/Au on n-GaN Grown on Sapphire and SiC Substrates”; Applied Physics Letters, vol. 79, No. 16; Oct. 15, 2001; pp. 2567-2569.
Satoshi Kamiyama, Pierr-Yves Lesaicherre, Hiroshi Suziki, Akira Sakai, Iwao Nishiyama, Akijiko Ishitani; “Ultrathin Tantalum Odise Capacitor DIELECTRIC Layers Fabricated Using Rapid Thermal Nitridation Prior to Low Pressure Chemical Vapor Deposition”; J. Electrochem. Soc., vol. 140, No. 6; Jun. 1993; The Electrochemical society, inc.; p. 1617.
C. Chaneloere, J.L. Autran, R.A.B. Devine, B. Balland; “Tantalum Pentoxide (Ta2O5) Thin Films for Advanced Dielectric Applications”; Reports: a Review Journal; Materials Science and Engineering, R22 (1998) 269-322.
G.B. Akers, L.A. Sturling, R.B. Vandover, J.P. Chang, D.J. Werder, R.Urddahl, R.Rajopalan; “Effects of Thermal Stability and Roughness on Electrical Properties of Tantalus Oxide Gates”; Mat. Res., Soc. Symp. Proc, vol. 567 1999 Materials Research Socie

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for depinning the Fermi level of a semiconductor at... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for depinning the Fermi level of a semiconductor at..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for depinning the Fermi level of a semiconductor at... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3643526

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.