Treatment of catabolic states using authentic IGF-1 and hypocalo

Drug – bio-affecting and body treating compositions – Designated organic active ingredient containing – Peptide containing doai

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

514 2, 514 21, 530324, 530303, 530399, 435 691, A61K 3800, A61K 3818

Patent

active

060340592

DESCRIPTION:

BRIEF SUMMARY
DESCRIPTION

1. Technical Field
This invention relates to a method and a product for the treatment or prevention of the catabolic state in patients, involving the administration of insulin-like growth factor 1 (IGF-1).
2. Background Art
IGF-1 is a peptide belonging to the somatomedin family. It is comprised of 70 amino acids, including 3 disulphide bonds. Its amino acid sequence is known. IGF-1 is normally found in the circulation bound to at least two different classes of binding proteins (ca 150.000 D) and the low molecular weight binding protein (ca 30.000 D). IGF-1 is mitogenic in cell lines (i.e in vitro) and has been shown to stimulate growth in growth hormone (GH) deficient animals.
The IGF-1 concentration is in plasma (blood), at least partly, regulated by GH but also by other hormones, such as thyroxine, and by the nutritional status.
A wide variety of clinical conditions can lead to loss of weight and muscle in patients and in particular to protein depletion. Examples of possible causes are burns, multiple trauma, sepsis, major surgery and maligant tumours. In some cases, patients cannot be fed orally at all (e.g in the case of gastrointestinal surgery) or only at an inadequate caloric level. In other instances nutrients taken orally cannot be absorbed or cannot be absorbed with normal efficiency via the gastro-intestinal tract. In such cases intravenous feeding must be utilised but it is difficult or sometimes impossible to supply normal caloric requirements by the intravenous route. There is also a risk for liquid overload.
In such circumstances there is a need to be able to treat or prevent a catabolic state whilst supplying the patient with a diet that, to the extent that it is utilised by the body, is inadequate to meet his/her normal caloric requirements. Such a diet is referred to herein as a "hypocaloric diet".
It has been suggested (International Patent Application WO 87/04074) that protein accretion or nitrogen retention can be promoted in the case of a hypocaloric diet by the administration of growth hormone (GH). It is thought that any beneficial effect resulting from the administration of GH may be derived from an increased level of IGF-1 in the bloodstream that has been observed in some cases. On the other hand, there is conflicting evidence both from human and ovine studies where administration of GH did not bring about any IGF-1 response. In any event, not all classes of patients are able to respond to the administration of GH by an increase in IGF-1 levels. Indeed, relative GH resistance is frequently seen in catabolic states.
Moreover, very young children particularly those less than one year of age do not have the necessary GH receptors and in severely-starved adults the GH receptor function is impaired or the receptors are reduced in number so that administration of GH in such cases is ineffective or only effective in greatly increased (i.e pharmacological) quantities. High doses of GH are undesirable as they can lead to hyperglycaemia and in any event the drug is expensive. Futhermore, in the case of adults, it is not always easy to determine whether a given patient will be able to respond to the treatment with GH or not.
It has also been suggested that treatment with certain analogues of IGF-1 can lead to increased growth rates in animals (International Patent Application WO 87/01038, WO 89/05822). It was postulated that the use of analogues having certain amino acid residues absent from the N-terminus would reduce the degree of binding to the IGF-1 binding proteins. This was based on the assumption that only free (i.e unbound) IGF-1 has the desired anti-catabolic activity. On the other hand, it has been suggested that freely-circulating IGF-1 may be responsible for the known tendency of that material to cause undesirable hypoglycaemia. In fact, the prevailing opinion was that systemically administered IGF-1 could not be used therapeutically for that reason. However, we now believe that the bound forms of IGF-1 may be responsible for the desired anabolic effects.


SUMMARY O

REFERENCES:
Jacob et al., "Acute Effects of Insulin-Growth Factor 1 on Glucose and Amino Acid Metabolism in the Awake Fasted Rat", Am. Soc. Clin. Invest., May 1989, vol. 83, pp. 1717-1723.
G. C. Liggins, Premature Delivery of Foetal Lambs Infused with Glucocorticoids, J. Endocr., 1969, 515-523, 45 Great Britian.
G. C. Liggins et al., A Controlled Trial of Antepartum Glucocorticoid Treatment for Prevention of the Respiratory Distress Syndrome in Premature Infants, Pediatrics, Oct. 1972, 515-525, 50(4).
Collaborative Group on Neonatal Seroid Therapy, Effect of Antenatal Dexamethasone Administration on the Prevention of Respiratory Distress Syndrome, Am. J. Obstet. Gynecol., Oct. 1, 1981, 276-286, 141(3), USA.
Don Schalch et al., The Effects of a Calorie-Restricted Diet on Growth Hormone, Endocrinology, 1985, 2307-2312, 117(6), USA, Abstract CA104 (3):15738M.
J. McK. Manson et al., Positive Nitrogen Balance with Human Growth Homrone and Hypocaloric Intravenous Feeding, Surgery, Aug. 1986, 188-197, 100(2), USA.
Naomi Hizuka et al., Insulin-Like Growth Factor I Stimulates Growth in Normal Growing Rats, European J. Pharmacology, 1986, 143-146, 125, Elsevier Science Publishers B.V.
Hans-Peter Guler et al., Short-Term Metabolic Effects of Recombinant Human Insulin-Like Growth Factor I in Healthy Adults, The New England Journal of Medicine, Jul. 16, 1987, 137-140, 317(3).
Takaharu Fujioka et al., Sustained-Release Pharmaceuticals containing hormones and polymeric carriers, Abstract: 106:72941n, Chem. Abst., 385-386, 106.
W. E. Sonntag et al., Chronic Ethanol Feeding Inhibits Plasma Levels of Insulin-Like Growth Factor-1, Life Sci, 1988, 1325-1330, 43 (16), Abstract.
U. O'Sullivan et al., Insulin-Like Growth Factor-1 (IGF-1) in Mice Reduces Weight Loss During Starvation, Endocrinology, 1989, 2793-2794, 125(5), The Endocrine Society, USA.
Zhu-Ming Jiang et al., Low-Dose Growth Hormone and Hypocaloric Nutrition Attenuate the Protein-Catabolic Response After Major Operation, Ann. Surg., Oct. 1989, 513-525, 210(4), USA.
Kazue Takano et al., Effects of sc Administration of Recombinant Human Insulin-Like Growth Factor I (IGF-I) on Normal Human Subjects, Endocrinol. Japon., 1990, 309-317, 37(2).
R. G. Douglas et al., Metabolic Effects of Recombinant Human Growth Hormone: Isotopic Studies in the Postabsorptive State and During Total Parenteral Nutrition, Br. J. Surg., Jul. 1990, 785-790, 77(7), Butterworth-Heinemann Ltd.
P.J. Pacy et al. Influence of Glucagon on Protein and Leucine Metabolism: A Study in Fasting Man with Induced Insulin Resistance, Br. J. Surg., Jul. 1990, 791-794, 77(7), Butterworth-Heinemann Ltd.
Fritz F. Horber et al., Human Growth Hormone Prevents the Protein Catabolic Side Effects of Prednisone in Humans, J: Clin. Invest., Jul. 1990, 265-272, 86.
Joel D. Kopple, Clinical Experience with Parenteral Nutrition in Acute Renal Failure, in Nutritional Support in Organ Failure, ed. T. Tanaka and A. Okada, 1990, 393-404, Elsevier Science Publishers (Biomedical Division).
Jan L. Walker et al., Effects of the Infusion of Insulin-Like Growth Factor I in a Child with Growth Hormone Insensitivity Syndrome (Laron Dwarfism), The New England Journal of Medicine, May 23, 1991, 1483-1488, 324(21).
Elias A. Lianos et al., Mesangial Cell Immune Injury, J. Clin. Invest., Aug. 1991, 623-631, 88.
R. G. Douglas et al., The Effects of Infusion of Insulinlike Growth Factor (IGF) I, IGF-II, and Insulin on Glucose and Protein Metabolism in Fasted Lambs, J. Clin. Invest., Aug. 1991, 614-622, 88.
Jacob et al., "Acute Effects of Insulin-like Growth Factor 1 on Glucose and Amino Acid Metabolism in the Awake Fasted Rat", Am. Soc. Clin. Invest., May 1989, vol. 83, pp. 1717-1723.
Low-dose growth hormone and hypocaloric nutrition attenuate the protein-catabolic response after major operation, Dialog Information Services, File 155, Medline 66-91/May, Dialog Accession No. 07118481, Jiang ZM et al., Ann Surg Oct. 1989, 210 (4) pp. 513-524.
Koea, J. B. et al., "Synergistic Effect of Insulin-

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Treatment of catabolic states using authentic IGF-1 and hypocalo does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Treatment of catabolic states using authentic IGF-1 and hypocalo, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Treatment of catabolic states using authentic IGF-1 and hypocalo will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-363119

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.