Process for treating incineration residues from an...

Furnaces – Process – Treating fuel constituent or combustion product

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C110S16500A, C110S266000

Reexamination Certificate

active

06814013

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a process for treating incineration residues from an incineration plant, in particular a waste incineration plant, in which the incineration material is incinerated on a furnace grate, and the incineration residues produced are quenched in a wet slag remover and are conveyed out of the latter.
2. Description of the Related Art
It is known from DE 701 606 C to convey the incineration residues into a slag remover, which has an introduction chute and a slag removal vessel with rising discharge spout and from there to remove the incineration residues by means of a discharge ram. In the process, the water for quenching the slag is fed to the slag removal vessel, only the same amount of fresh water being introduced into this slag removal vessel as is discharged with the slag on account of its moisture content. In this case, an equilibrium concentration is established with regard to numerous substances and compounds, e.g. salts, which are present in the residues, so that it is impossible to lower their concentration. This results in the slag having unsatisfactory properties with regard to its ability to form landfill and to be processed further to form construction materials. Another reason for this drawback is that there is no division or classification of the incineration residues into fractions with better properties and those with worse properties, and consequently the incineration residues produced as a whole inevitably have unsatisfactory properties.
It is known from DE 44 23 927 A1 to feed the incineration residues which come out of a furnace directly, without prior quenching in a water bath, to the primary cleaning stage. The dry slag which has undergone primary cleaning is separated into at least two fractions. All the particles which are smaller than 2 mm are allocated to a first fraction, and the remaining particles are allocated to a second fraction. As this process continues, the second fraction is in turn separated, in a screening stage, into at least two fractions, and all the particles which are smaller than 27 to 35 mm are allocated to a third fraction, while the remaining particles are allocated to a fourth fraction. In this way, fractions of incineration residues with satisfactory properties are obtained. Drawbacks of this process are the considerable amounts of dust produced and problems with achieving an airtight closure of the incineration chamber.
SUMMARY OF THE INVENTION
It is an object of the invention to provide a process which facilitates the separation and increase in the content of usable slag from incineration residues and specifically in which the drawbacks of dust being formed and the airtight closure of the incineration chamber are avoided with a low level of outlay on equipment and a low water consumption.
This object is achieved, starting from the process explained in the introduction, in two different ways depending on the composition of the incineration material.
According to the invention, the first process variant consists in the fact the wet incineration residues which come out of the wet slag remover are firstly divided into two fractions by means of a mechanical separation operation, after which the main fraction, which substantially includes a coarse fraction and an oversize fraction, is washed with water taken out of the wet slag remover, and in the process adhering finer pieces are separated off, and that the washing water together with the finer parts which it has taken up during the washing operation is fed to the wet slag remover.
This process variant is used whenever it can be assumed that the main fraction to be reutilized contains a low level of pollutants which can be washed out, such as for example salts or heavy metals.
With this method of circulating the water originating from the wet slag remover, the main fraction, which has good quality properties, has the adhering fine pieces, which experience has shown have an adverse effect on the quality of the main fraction, removed from it without relatively large quantities of fresh water having to be used, so that the incineration residues are present in the form of slag with good-quality properties for further processing.
In a second process variant, which is used whenever it is expected that there will be a relatively high level of pollutants which can be washed out, such as for example salts or heavy metals, in the incineration residues produced, the treatment is carried out in such a way that the wet incineration residues which come out of the wet slag remover are firstly divided into two fractions by means of a mechanical separation operation, after which the main fraction which has been separated off and substantially includes a coarse fraction and an oversize fraction if subjected to a comminution operation and is then washed with water taken from the wet slag remover, and that the washing water together with the relatively fine pieces which it has taken up during the washing operation is fed to the wet slag remover. The result of the comminution of the main fraction is that during the subsequent washing operation, the pollutants which are included in the relatively large pieces of the incineration residues are washed out and can in this way be separated from the main fraction which can be reutilized, with the result that, despite these incineration residues being relatively highly laden with pollutants, a large proportion of the incineration residues can be obtained as reusable slag without it being necessary to anticipate relatively large amounts of pollutants being washed out at a later stage.
In a further configuration of the invention, the fine fraction and ultra fine fraction produced during the mechanical separation are fed to the incineration operation. These fractions are once again subjected to an incineration operation, so that it is possible to fuse and sinter these fractions.
These measures avoid the drawbacks of the procedure explained first, in which all the incineration residues can only be fed for reutilization if, by chance, the levels of materials with relatively poor properties are low. Compared to the second known process, the drawback of the formation of dust and also the drawback of sealing the incineration chamber are avoided. Moreover, the return of the fine fraction and ultra fine fraction which have relatively poor quality properties additionally increases the proportion of the incineration residues which can be reutilized, since the fine pieces which are returned, after they have been returned one or more times, have the opportunity to agglomerate to form incineration residues which have the desired properties. This advantage is likewise not present in the second known process, on account of the absence of this return step.
If, in a further configuration of the invention, the main fraction which has been prewashed with water from the wet slag remover is rinsed further with fresh water, the slag remover water, which has a relatively high level of pollutants, is rinsed off and the quality of the incineration residues or of the sintered slag is improved further. The use of fresh water to further rinse the coarse fraction also brings the advantage that, as a result, at least some of the water which comes out of the further rinsing stage can be fed to the off-gas purification without this water having to undergo preliminary purification, since the level of pollutants is relatively low. Furthermore, it may be advantageous for at least some of the water which comes out of the further rinse to be fed to the wet slag remover. In this way, the level in the wet slag remover can be maintained, since the quantity of incineration residues discharged always entrains water, with the result that the quantity of water in the wet slag remover decreases and would in any case have to be topped up. Since the water which comes out of the further rinsing stage has only low calcium and sulfate contents, there is no risk of lines or nozzles becoming blocked.
If, in the first separation operation ac

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for treating incineration residues from an... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for treating incineration residues from an..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for treating incineration residues from an... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3363406

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.