Method and system for display of well log data and data...

Data processing: measuring – calibrating – or testing – Measurement system in a specific environment – Earth science

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C702S016000

Reexamination Certificate

active

06751555

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates generally to the field of well log data acquisition and interpretation. More specifically, the invention relates to methods and systems for display of well log data and information ancillary to such well log data as used in interpretation thereof.
2. Background Art
Well logs are measurements, typically with respect to depth, of selected physical parameters of earth formations penetrated by a wellbore. Well logs are typically recorded by inserting various types of measurement instruments into a wellbore, moving the instruments along the wellbore, and recording the measurements made by the instruments. One type of well log recording includes lowering the instruments at the end of an armored electrical cable, and recording the measurements made with respect to the length of the cable extended into the wellbore. Depth within the wellbore is inferred from the extended length of the cable. Recordings made in this way are substantially directly correlated to measurement depth within the wellbore. Another method for measurement is known as “logging while drilling” (LWD) and includes attaching the instruments to the lower portion of a drilling tool assembly used to drill the wellbore. Some of the measurements are made by transmitting them to the surface using a pressure modulation telemetry system, which modulates pressure of a drilling fluid (mud) flowing through the interior of the drilling tool assembly. A much larger amount of well log data is stored in a recording device disposed in the logging instrument, which is interrogated when the instrument is retrieved from the wellbore. This information is typically recorded with respect to time. A record of instrument position in the wellbore with respect to time made at the earth's surface is then correlated to the time/measurement record retrieved from the instrument storage device to generate a conventional “well log” of measurements with respect to wellbore depth.
Well logs are typically presented in a graphic form including a plurality of grids or “tracks” each of which is scaled from a selected lower value to a selected upper value for each measurement type presented in the particular track. A “depth track” or scale which indicates depth in the wellbore, is typically positioned between two of the tracks. Depending on the needs of the particular user, any number of or type of measurements may be presented in one or more of the tracks. A typical well log presentation of an individual measurement is in the form of a substantially continuous curve or trace. Curves are interpolated from discrete measurement values stored with respect to time and/or depth in a computer or computer-readable storage medium. Other presentations include gray scale or color scale interpolations of selected measurement types to produce the equivalent of a visual image of the wellbore wall. Such “image” presentations have proven useful in certain types of geologic analysis.
Interpreting well log data includes correlation or other use of a very large amount of ancillary information. Such information comprises the geographic location of the wellbore (e.g. global positioning satellite data), and geologic and well log information from adjacent wellbores. Other information comprises the types of instruments used, their mechanical configuration and records relating to their calibration and maintenance. Still other types of information include the actual trajectory of the wellbore, which may traverse a substantial geographic distance in the horizontal plane with respect to the surface location of the wellbore. Other information of use in interpreting well log data includes data about the progress of the drilling of the wellbore, the type of drilling fluid used in the wellbore, environmental corrections applicable to the particular logging instruments used.
Methods known in the art for making the ancillary information available to a user of a well log includes transporting physical records to the wellbore, such as by magnetic diskette or paper copy, and including the transported records into the final record of the well log. Inclusion into the final well log may be made by manual entry of data such as by keyboard or other “download” of the data into the recording system which makes the record of the measurements at the wellbore site (“wellsite”).
Much of this ancillary information is applicable to any well log recorded with a particular type of well logging instrument. For example, an instrument which measures naturally occurring gamma radiation (“gamma ray”) has environmental corrections which correspond only to the type of instrument. As one example, each wireline type gamma ray device of a selected external diameter from a particular wireline operator will have the same environmental corrections for “mud weight” (drilling fluid density). Other types of ancillary information are made available from the wellbore operator (typically an oil and gas producing entity). Examples of this type of information are the geographic location of the wellbore and any information from other wellbores in the vicinity. Still other types of ancillary information include records of initial and periodic calibration and maintenance of the particular instruments used in a particular wellbore.
The foregoing is only a small subset of the types of ancillary information which may be used in interpreting a particular well log. Irrespective of the type of ancillary information, transportation of this information, and its inclusion in each and every well log data record made at a particular wellsite can be expensive and cumbersome, particularly with respect to the needs for storage of such information. Particularly where a large number of wells are logged using similar or the same instruments, or in a geographic location having a large number of closely spaced wellbores, redundant storage of such ancillary information can be expensive and cumbersome.
It is known in the art to transmit well log data substantially in “real time” (at the time of acquisition) from a wellsite to a remote location (such as a user office). See for example, U.S. Pat. No. 6,101,445 issued to Alvarado et al. The system disclosed in the '445 patent is adapted so that a user may view and use well log data as it is being recorded. To use the data in various applications, it is necessary to download or otherwise transfer the received data to the selected application.
U.S. Pat. No. 5,873,049 issued to Bielak et al. discloses a system for using data having a plurality of formats in determining an earth model using application programs adapted to read different types and/or formats of data. The system in the '049 patent has no facility for use of data during acquisition at the wellsite.
U.S. Pat. No. 6,070,125 issued to Murphy et al. discloses a system for providing a geologic interpretation of various forms of data acquired from a wellbore, including well log data, seismic data, and drilling performance data. There is no facility in the system disclosed in the '125 patent for remote access and display of wellbore data ancillary to data recorded at the wellsite.
U.S. Pat. No. 6,128,577 issued to Assa et al discloses a system for modeling and evaluating models of geologic structures from various wellbore data sources. A method disclosed in the '577 patent includes organizing data into a database part and a design part. A shape of a geologic feature determined during feature classification is retained. A feature is divided into a first sub region and a second sub region having a boundary therebetween. A material property is assigned to each sub region. The sub region is divided into a plurality of sub regions, and the material property is propagated to the plurality of sub regions. The method and system disclosed in the '577 patent provides no facility for using data stored at a remote location to view and process data presented and/or recorded at a different location.
U.S. Pat. No. 6,366,988 B1 issued to Skiba et al discloses

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and system for display of well log data and data... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and system for display of well log data and data..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and system for display of well log data and data... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3361496

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.