Method for generating hypermutable organisms

Chemistry: molecular biology and microbiology – Process of mutation – cell fusion – or genetic modification

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S455000, C435S465000, C435S320100, C435S325000

Reexamination Certificate

active

06825038

ABSTRACT:

TECHNICAL FIELD OF THE INVENTION
The invention is related to the area of mismatch repair genes. In particular it is related to the field of mutagenesis.
BACKGROUND OF THE INVENTION
Within the past four years, the genetic cause of the Hereditary Nonpolyposis Colorectal Cancer Syndrome (HNPCC), also known as Lynch syndrome II, has been ascertained for the majority of kindreds affected with the disease (13). The molecular basis of HNPCC involves genetic instability resulting from defective mismatch repair (MMR). Many genes have been identified in rodents and humans that encode for proteins that appear to participate in the MMR process, including the mutS homologs GTBP, hMSH2, and hMSH3 and the mutL homologs hMLH1, hPMS1, and hPMS2 (2, 7, 11, 17, 20, 21, 22, 24). Germ line mutations in four of these genes (hMSH2, hMLH1, hPMS1, and hPMS2) have been identified in HNPCC kindreds (2, 11, 13, 17, 24). Though the mutator defect that arises from the MMR deficiency can affect any DNA sequence, microsattelite sequences are particularly sensitive to MMR abnormalities (14). Microsattelite instability is therefore a useful indicator of defective MMR. In addition to its occurrence in virtually all tumors arising in HNPCC patients, Microsattelite instability is found in a small fraction of sporadic tumors with distinctive molecular and phenotypic properties (27).
HNPCC is inherited in an autosomal dominant fashion, so that the normal cells of affected family members contain one mutant allele of the relevant MMR gene (inherited from an affected parent) and one wildtype allele (inherited from the unaffected parent). During the early stages of tumor development, however, the wildtype allele is inactivated through a somatic mutation, leaving the cell with no functional MMR gene and resulting in a profound defect in MMR activity. Because a somatic mutation in addition to a germline mutation is required to generate defective MMR in the tumor cells, this mechanism is generally referred to as one involving two hits, analogous to the biallelic inactivation of tumor suppressor genes that initiate other hereditary cancers (11, 13, 25). In line with this two hit mechanism, the non-neoplastic cells of HNPCC patients generally retain near normal levels of MMR activity due to the presence of the wildtype allele.
A wide range of organisms with defective MMR have been found to have widespread genetic mutations throughout their genome. In all cases, these organisms have germline mutations within both copies of a particular MMR gene. Recently, work done by Nicolaides et al have shown that a decrease in MMR can be achieved within cells from higher order organisms by introducing a dominant negative allele of a MMR gene. These data suggest that the use of such an approach can generate genetically altered organisms to produce new output traits. There is a need in the art for additional methods with which to generate genetic diversity.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a method for rendering cells hypermutable.
It is another object of the present invention to provide genetically altered cell lines.
It is another object of the present invention to provide phenotypically altered cell lines.
It is yet another object of the present invention to provide a method to produce an enhanced rate of genetic hypermutation in a cell.
It is a further object of the invention to provide a method of mutating a gene(s) of interest in a cell.
It is a further object of the invention to claim composition of matter for a genetically altered bacterial purine phosphorlyase.
It is a further object of the invention to claim composition of matter for a genetically altered bacterial purine phosphorlyase as a diagnostic tool for monitoring mismatch repair deficiency of a eucaryotic cell.
It is a further object of the invention to claim composition of matter for a generating genetically altered genes by incorporating a polymononucleotide tract to measure for altered mismatch repair in eucaryotic cells.
Yet another object of the invention is to provide a method of creating cells with new phenotypes.
Yet another object of the invention is to provide a method of creating cells with new phenotypes and a stable genome.
Yet another object of the invention is to provide a method of regulating the genetic stability of a cell or organism's genome.
It is a further object of the invention to generate hypermutable cell lines using inducible vectors containing dominant negative mismatch repair gene mutants.
It is a further object of the invention to screen for hypermutable cell lines containing inducible vectors with dominant negative mismatch repair gene mutants under induced gene expression conditions.
It is a further object of the invention to screen for hypermutable cell lines containing inducible vectors with dominant negative mismatch repair gene mutants under induced gene expression conditions for altered gene structure and/or new phenotypes.
It is a further object of the invention to turn off expression of a dominant negative MMR gene in cells containing structurally altered target genes and/or new phenotypes to restore genomic stability.
It is a further object of the invention to screen hypermutable cell lines containing an inducible vector comprising a dominant negative mismatch repair gene mutant under inducing conditions in the presence of chemical mutagens or ionizing radiation for structurally altered target genes and/or new phenotypes. Cells containing altered gene structure and/or new phenotype are then removed from inducer molecule and genetic stability is restored.
These and other objects of the invention are provided by one or more of the embodiments described below. In one embodiment of the invention, a method for making a hypermutable cell is provided. A polynucleotide encoding a dominant negative allele of a mismatch repair gene is introduced into a cell. The cell becomes hypermutable as a result of the introduction of the gene.
In another embodiment of the invention, an isolated hypermutable cell will be provided. The cell comprises a dominant negative allele of a mismatch repair gene. The cell is exposed to DNA akylating agents. The cell exhibits an enhanced rate of hypermutation.
In another embodiment of the invention, a method is provided for introducing a mutation into a gene of interest. A polynucleotide encoding a dominant negative allele of a mismatch repair gene is introduced into a cell. The cell becomes hypermutable as a result of the introduction of the gene. The cell further comprises a gene of interest. The cell is grown. The cell is tested to determine whether the gene of interest harbors a mutation.
In another embodiment of the invention, a method is provided for inserting a polymononucleotide tract in a gene to measure for mismatch repair activity of a eucaryotic cell. A polynucleotide tract is inserted out-of-frame into the coding region of a gene or a cDNA. The gene is introduced into a cell. The polymononucleotide tract is altered by mismatch repair deficiency. An in-frame altered gene is produced.
In another embodiment of the invention, a method is provided for producing new phenotypes of a cell. A polynucleotide encoding a dominant negative allele of a mismatch repair gene is introduced into a cell. The cell becomes hypermutable as a result of the introduction of the gene. The cell is grown. The cell is tested for the expression of new phenotypes. Another embodiment of the invention is the use of cells containing an inducible vector consisting of a dominant negative mismatch repair gene mutants under inducing conditions in the presence of chemical mutagens or ionizing radiation for altered target genes and/or new phenotypes. Cells containing altered gene structure and/or new phenotype are then removed from inducer molecule and genetic stability is restored. The cells are now used for commercial properties such as but not limited to recombinant manufacturing and/or gene discovery.
Another embodiment of the invention is the use of MMR defective cells containing a gene of

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method for generating hypermutable organisms does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method for generating hypermutable organisms, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method for generating hypermutable organisms will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3361412

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.