Golf balls with silicone-urea copolymers

Games using tangible projectile – Golf – Ball

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C473S374000, C528S028000

Reexamination Certificate

active

06776729

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to golf balls. More specifically, to the use of silicone-urea copolymer materials in a golf ball cover, core and intermediate layers between the cover and the core for improving golf ball physical properties.
BACKGROUND OF THE INVENTION
Conventional golf balls can be divided into two general types or groups: solid balls and wound balls. The difference in play characteristics resulting from these different types of constructions can be quite significant.
Balls having a solid construction are generally most popular with the average recreational golfer because they provide a very durable ball while also providing maximum distance. Solid balls are generally made with a single solid core, usually made of cross-linked rubber, which is encased by a cover material. Typically the solid core is made of polybutadiene which is chemically cross-linked with zinc diacrylate and/or similar cross-linking agents and is covered by a tough, cut-proof blended cover. The cover is generally a material such as SURLYN®, which is a trademark for an ionomer resin produced by DuPont. The combining of the core and cover materials provides a ball that is virtually indestructible by golfers. Further, such a combination imparts a high initial velocity to the ball that results in improved distance. Because these materials are very rigid, two-piece balls have a hard “feel” when struck with a club. Likewise, due to their hardness, these balls have a relatively low spin rate, which provides greater distance.
Wound balls typically have either a solid rubber or liquid center core around which many yards of a stretched elastic thread or yam are wound. The wound core is then covered with a durable cover material such as ionomer or polyurethane. Wound balls are generally softer and provide more spin, which enables a skilled golfer to have control over the ball's flight and final position. Particularly, with approach shots into the green, the high spin rate of soft, wound balls enables the golfer to stop the ball very near its landing position.
The design and technology of golf balls has advanced to the point whereby the United States Golf Association has now instituted a rule that prohibits the use, in a USGA sanctioned event, of any golf ball which can achieve an initial velocity of 255 ft/s when struck by a implement having a velocity of 143 ft/s. (Herein referred to as the USGA test.)
Manufacturers place a great deal of emphasis on producing golf balls that consistently achieve the highest possible velocity in the USGA test without exceeding the limit, which are available with a range of different properties and characteristics, such as velocity spin and compression. Thus, a variety of different balls are available to meet the needs and desires of a wide range of golfers.
Regardless of the form of the ball, players generally seek a golf ball that delivers maximum distance, which requires a high initial velocity upon impact. Therefore, in an effort to meet the demands of the marketplace, manufacturers strive to produce golf balls with high initial velocities.
As a result, golf ball manufacturers are continually searching for new ways in which to provide golf balls that deliver the maximum performance for golfers at all skill levels, and seek to discover compositions that provide the performance of a high compression ball with lower compression. For example, U.S. Pat. No. 5,484,870 issued to Shenshen Wu, that teaches polyurea compositions that can be used for a golf ball cover.
The physical characteristics of a golf ball are determined by the combined properties of the core, any intermediate layers, and the cover. These, in turn, are determined by the chemical compositions of each. The composition of some balls will provide for increased distance. Other compositions provide for improved spin. Manufacturers are constantly looking to develop the ideal materials, silicone elastomers for example, have been examined for their innate ability to provide material having fairly high ultimate elongation, which is a very desired property in the make-up of a golf ball. However, they also have only low-moderate tensile strengths. One of the least attractive properties of silicone elsatomers in the manufacture of golf balls is that the materials require covalent cross-linking to develop useful properties. This is because linear or branched silicone (polydimethylsiloxane)(PSX) homopolymers are viscous liquids or millable gums at room temperature. Fabrication of these materials must include, or be followed by, cross-linking to form chemical bonds among adjacent polymer chains. The infinite network thus formed gives the polymer its rubber elasticity and characteristic physical-mechanical properties. Cross-linking of extrudable and moldable silicone stock is usually done via peroxide-generated free radicals adding to vinyl groups incorporated along the polymer backbone, or increasingly, by the platinum-catalyzed addition of silane (—Si—H) terminal vinyl groups. Certain low-strength (RTV) silicone adhesives vulcanize at room temperature by condensation reactions, eliminating an acid or alcohol to generate —Si—OH or silanols, followed by the elimination of water as silanols condense to form —Si—O—Si— (siloxane) bonds and create a three-dimensional network.
Regardless of how the cross-linking or vulcanization is effected, the resulting thermoset silicone cannot be re-dissolved or re-melted. This severely reduces the number of post-fabrication operations that could be used in the fabrication process of golf balls. Thermal forming, radio frequency welding, heat sealing and solvent bonding are all essentially unavailable when working with conventional silicone elastomers.
Therefore, despite the prior-art on several conventional polyurea polymers, there exists a need for a golf ball comprising a silicone-urea having improved golf ball performance.
SUMMARY
The invention is related to a use of a silicone-urea material for forming golf balls. More particularly, the present invention is directed to the use of silicone-urea copolymers and blends containing silicone-urea in the formation of a golf ball core, cover or intermediate layer.
A first embodiment is a golf ball comprised of a core and a cover, one of which comprises an aromatic or aliphatic urea hard segment with a silicone based soft segment to create a silicone-urea copolymer. Preferably the core or cover is comprised of a silicone-polyether urea copolymer.
A second embodiment of the invention combines the above hard and soft segments with a polycarbonate to form a silicone-polycarbonate urea copolymer.
Another embodiment of the invention combines the above hard and soft segments with a polyethylene oxide to form a thermoplastic silicone-polyethyleneoxide urea copolymer.
Other embodiments of the invention include blends of silicone-polyurea with at least one thermoplastic or thermoset polymer including ionomers, including highly neutralized ionomers, non-ionomers, polyurethane, epoxy, styrenic, olefinic homo and copolymers (including metallocenes and single-site), polyamides, polyester, polyimide, polydiene, block copolymers of polyether (or ester)-ester, polyether (or ester)-amide and suitable compatibilizers.
The invention is either a two-piece or a multi-layered golf ball having a coefficient of restitution greater than about 0.7 and an Atti compression of at least about 50. Preferably the cover is a silicone-urea copolymer having: a material tensile strength of greater than about 1,000 psi, and preferably between about 1000 psi to 5000 psi; an ultimate elongation greater than about 40%, and preferably between about 400 to 800%; and an initial modulus from about 300 psi to 80,000 psi, preferably from about 10,000 psi to 80,000 psi.
In preferred embodiments of the present invention, the silicone-urea copolymers have a silicone content from 0.1% to 60% of by weight of polymer. More preferably, the silicone-urea copolymers have a silicone content of between about 1% and 20%.
A preferred embodiment is a golf ball wherein one of

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Golf balls with silicone-urea copolymers does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Golf balls with silicone-urea copolymers, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Golf balls with silicone-urea copolymers will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3358041

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.