Incremental printing of symbolic information – Ink jet – Ejector mechanism
Reexamination Certificate
2002-11-18
2004-06-08
Vo, Anh T. N. (Department: 2861)
Incremental printing of symbolic information
Ink jet
Ejector mechanism
C347S077000
Reexamination Certificate
active
06746108
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to the field of digitally controlled printing devices, and in particular to continuous inkjet printers wherein a liquid ink stream breaks into droplets, some of which are selectively deflected.
BACKGROUND OF THE INVENTION
The printing technology, commonly referred to as “continuous stream” or “continuous” inkjet printing, uses a pressurized ink source that produces a continuous stream of ink droplets. Conventional continuous inkjet printers utilize electrostatic charging devices that are placed close to the point where a filament of ink breaks into individual ink droplets. The ink droplets are electrically charged and then directed to an appropriate location by deflection electrodes. When no printing is desired, the ink droplets are directed into an ink-capturing mechanism (often referred to as a catcher, an interceptor, or a gutter). When printing is desired, the ink droplets are directed to strike a print media.
Typically, continuous inkjet printing devices are faster than drop-on-demand devices and produce higher quality printed images and graphics. However, each color printed requires an individual droplet formation, deflection, and capturing system.
U.S. Pat. No. 1,941,001, titled “Recorder,” issued Dec. 26, 1933 to C. W. Hansell, and U.S. Pat. No. 3,373,437, titled “Fluid Droplet Recorder With A Plurality Of Jets,” issued Mar. 12, 1968 to R. G. Sweet et al. each disclose an array of continuous inkjet nozzles wherein ink droplets to be printed are selectively charged and deflected towards the recording medium. This technique is known as binary deflection continuous inkjet printing.
U.S. Pat. No. 3,416,153, titled “Ink Jet Recorder,” issued Dec. 10, 1968 to C. H. Hertz et al. discloses a method of achieving variable optical density of printed spots in continuous inkjet printing using the electrostatic dispersion of a charged droplet stream to modulate the number of droplets which pass through a small aperture.
U.S. Pat. No. 3,878,519, titled “Method And Apparatus For Synchronizing Droplet Formation In A Liquid Stream,” issued Apr. 15, 1975 to James H. Eaton discloses a method and apparatus for synchronizing droplet formation in a liquid stream using electrostatic deflection by a charging tunnel and deflection plates.
U.S. Pat. No. 4,346,387, titled “Method And Apparatus For Controlling The Electric Charge On Droplets And Ink-Jet Recorder Incorporating The Same,” issued Aug. 24, 1982 to Carl H. Hertz discloses a method and apparatus for controlling the electric charge on droplets formed by the breaking up of a pressurized liquid stream at a droplet formation point located within the electric field having an electric potential gradient. Droplet formation is effected at a point in the field corresponding to the desired predetermined charge to be placed on the droplets at the point of their formation. In addition to charging tunnels, deflection plates are used to actually deflect droplets.
U.S. Pat. No. 4,638,382, titled “Printhead For An Ink Jet Printer,” issued Jan. 20, 1987 to Donald J. Drake et al. discloses a continuous inkjet printhead that utilizes constant thermal pulses to agitate ink streams admitted through a plurality of nozzles in order to break up the ink streams into droplets at a fixed distance from the nozzles. At this point, the droplets are individually charged by a charging electrode and then deflected using deflection plates positioned in the droplet path.
As conventional continuous inkjet printers utilize electrostatic charging devices and deflector plates, they require many components and large spatial volumes to operate effectively. This results in continuous inkjet printheads and printers that are complicated, have high energy requirements, are difficult to manufacture, and are difficult to control.
U.S. Pat. No. 3,709,432, titled “Method And Apparatus For Aerodynamic Switching,” issued Jan. 9, 1973 to John A. Robertson discloses a method and apparatus for stimulating a stream of ink causing the working fluid to break up into uniformly spaced ink droplets through the use of transducers. The lengths of the filaments before they break up into ink droplets are regulated by controlling the stimulation energy supplied to the transducers, with high amplitude stimulation resulting in short filaments and low amplitude stimulations resulting in longer filaments. A flow of air is generated across the paths of the fluid at a point intermediate to the ends of the long and short filaments. The air flow effects the trajectories of the filaments before they break up into droplets more than it effects the trajectories of the ink droplets themselves. By controlling the lengths of the filaments, the trajectories of the ink droplets can be controlled, or switched from one path to another. As such, some ink droplets may be directed into a catcher while allowing other ink droplets to be applied to a receiving member.
While this method does not rely on electrostatic means to effect the trajectory of droplets, it does rely on the precise control of the break up points of the filaments and the placement of the air flow intermediate to these break up points. Such a system is difficult to control and to manufacture. Furthermore, the physical separation or amount of discrimination between the two droplet paths is small, further adding to the difficulty of control.
U.S. Pat. No. 4,190,844, titled “Ink-let Printer With Pneumatic Deflector,” issued Feb. 26, 1980 to Terrence F. E. Taylor discloses a continuous inkjet printer having a first pneumatic deflector for deflecting non-printed ink droplets to a catcher and a second pneumatic deflector for oscillating printed ink droplets. Similar arrangements are also disclosed in Soviet Union Patent No. 581478, titled “Inked Recording Of Pneumatic Signals On Paper Tape Using Pulsed Pressure Droplet Stream And Deflecting Nozzle For Signal,” issued Nov. 29, 1977 and in European Patent No. 494385 issued Jul. 15, 1992 to Dietrich et al. A printhead supplies a stream of ink that breaks into individual ink droplets. The ink droplets are then selectively deflected by a first pneumatic deflector, a second pneumatic deflector, or both. The first pneumatic deflector is an “ON/OFF” type having a diaphragm that either opens or closes a nozzle depending on one of two distinct electrical signals received from a central control unit. This determines whether the ink droplet is to be printed or non-printed. The second pneumatic deflector is a continuous type having a diaphragm that varies the amount that a nozzle is open, depending on a varying electrical signal received at the central control unit. The second pneumatic deflector oscillates printed ink droplets so that characters may be printed one character at a time. If only the first pneumatic deflector is used, characters are created one line at time, and are built up by repeated traverses of the printhead.
While this method does not rely on electrostatic means to effect the trajectory of droplets, it does rely on the precise control and timing of the first (“ON/OFF”) pneumatic deflector to create printed and non-printed ink droplets. Such a system is difficult to manufacture especially for high-nozzle count printheads since independent pneumatic actuators are required for each inkjet. In addition, electromechanical actuators which would be typically used to modulate the air flow have slow response times. Consequently, the printing of individual drops, according to image data, would be very slow, relative to other commercialized inkjet printheads in the current marketplace. Furthermore, the physical separation or amount of discrimination between the two droplet paths is erratic, due to the precise timing requirements; hence, increasing the difficulty of controlling printed and non-printed ink droplets and resulting in poor ink droplet trajectory control.
Additionally, using two pneumatic deflectors complicates construction of the printhead and requires more components. The additional components and complicated structure require large spatial volu
Eastman Kodak Company
Shaw Stephen H.
Vo Anh T. N.
LandOfFree
Method and apparatus for printing ink droplets that strike... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Method and apparatus for printing ink droplets that strike..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for printing ink droplets that strike... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3356060