Iron-cobalt-vanadium alloy

Alloys or metallic compositions – Ferrous – Molybdneum containing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C420S127000, C148S311000

Reexamination Certificate

active

06685882

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to high temperature, high strength magnetic alloys with high saturation magnetization useful for applications such as rotors, stators and/or magnetic bearings of an auxiliary power unit of an aircraft jet engine.
2. State of the Art
In the discussion of the state of the art that follows, reference is made to certain structures and/or methods. However, the following references should not be construed as an admission that these structures and/or methods constitute prior art. Applicant expressly reserves the right to demonstrate that such structures and/or methods do not qualify as prior art against the present invention.
Binary iron-cobalt (Fe−Co) alloys containing 33-55% cobalt (Co) are extremely brittle due to the formation of an ordered superlattice at temperatures below 730° C. The addition of about 2% vanadium (V) inhibits this transformation to the ordered structure and permits the alloy to be cold-worked after quenching from about 730° C. The addition of V also benefits the alloy in that it increases the resistivity, thereby reducing the eddy current losses.
Fe−Co−V alloys have generally been accepted as the best commercially available alloy for applications requiring high magnetic induction at moderately high fields. V added to 2 wt. % has been found not to cause a significant drop in saturation and yet still inhibit the ordering reaction to such an extent that cold working is possible.
However, conventional Fe−Co−V alloys employing less than 2% by weight vanadium have undesirable inherent properties. For example, when the magnetic material undergoes a large magnetic loss the energy efficiency of the magnetic material deteriorates significantly. In addition, conventional Fe−Co−V alloys exhibit certain unsuitable magnetic properties when subjected to rapid current fluctuations. Further, as the percentage of V exceeds 2 wt. %, the DC magnetic properties of the material deteriorate.
In a common form, the composition of Fe−Co−V soft magnetic alloys exhibit a balance between favorable magnetic properties, strength, and resistivity as compared to magnetic pure iron or magnetic silicon steel. These types of alloys are commonly employed in devices where magnetic materials having high saturation magnetic flux density are required. Fe−Co−V alloys have been used in a variety of applications where a high saturation magnetization is required, i.e. as a lamination material for electrical generators used in aircraft and pole tips for high field magnets. Such devices commonly include soft magnetic material having a chemical composition of about 48-52% by weight Co, less than about 2.0% by weight V, incidental impurities and the remainder Fe.
U.S. Pat. No. 4,647,427 to Liu discloses examples of Fe−Co−V alloys containing long range order for enhanced mechanical properties. The alloys include, in wt. %, about 16% Fe, 22-23% V, 0-10% Ni, additions (0.4-1.4% Ti, Zr, or Hf, 0.5% Al, 0.5% Ti+0.5% Al, 0.9% Ti+0.5% Al, 3.2% Nb, and 0.8% Ti+1.2% Nb+0.4% Ce), and balance Co. The ordered lattice of this alloy imparts improved strength, including an inverse relationship for yield strength as a function of temperature. Titanium (Ti) is substituted for V to improve the mechanical properties, and niobium (Nb) is added for improved creep properties.
U.S. Pat. No. 4,933,026 to Rawlings et al. discloses soft magnetic cobalt-iron alloys containing V and Nb. The alloys include, in wt. %, 34-51% Co, 0.1-2% Nb, 1.9% V, 0.2-0.3% Ta, or 0.2% Ta+2.1% V. Rawlings et al. also mentions previously known magnetic alloys containing 45-55% Fe, 45-55% Co and 1.5-2.5% V. The objective of the alloy of Rawlings et al. is to obtain high saturization magnetization combined with ductility. The ductility and magnetization of the alloy of Rawlings et al. is attributed to the addition of niobium (Nb). Additionally, Rawlings et al. mentions the use of such an alloy in applications such as pole tips and aerospace applications.
U.S. Pat. No. 5,252,940 to Tanaka discloses an Fe−Co alloy having a 1:1 ratio of Fe to Co and containing 2.1-5% V. The Fe−Co−V composition of Tanaka provides high energy efficiency under fluctuating DC conditions by reducing eddy currents.
FeCoV alloys are disclosed in U.S. Pat. Nos. 3,634,072; 3,891,475; 3,977,919; 4,116,727; 4,933,026; 5,067,993; 5,252,940; 5,501,747; 5,741,374; and 5,817,191, the disclosures of which, as they are related to thermomechanical precessing of such alloys, are hereby incorporated by reference.
According to an article by Phillip G. Colegrove entitled “Integrated Power Unit for a Moore Electric Airplane”, AIAA/AHS/ASEE Aerospace Design Conference, Feb. 16, 1993, Irvine, Calif., an integrated power unit provides electric power for main engine starting and for in-flight emergency power as well as for normal auxiliary power functions. Such units output electric power from a switched-reluctance starter-generator driven by a shaft supported by magnetic bearings. The starter-generator is exposed to harsh conditions and environment in which it must function, e.g., rotational speeds of 50,000 to 70,000 rpm and a continuous operating temperature of approximately 500° C. The machine rotor and stator can be composed of stacks of laminations, each of which is approximately 0.006 to 0.008 inches thick. The rotor stack can be approximately 5 inches in length with a diameter of approximately 4.5 inches and the stator outside diameter can be about 9 inches. HiSat-50, an alloy produced by Telcon Metal Limited of England has been proposed for the rotor and stator laminations annealed at a temperature providing a desirable combination of strength and magnetic properties. The magnetic bearings are operated through attraction, rather than repulsion, of the shaft toward the magnetic force generator, the bearings exhibiting a desirable combination of bearing stiffness, load capability, allowable operating temperature and operational frequency. The operational temperature of the bearings can be on the order of 650° F.
Iron-cobalt alloys have been proposed for magnetic bearings used in integrated power units and internal starter/generators for main propulsion engines according to an article by Richard T. Fingers et al. entitled “Mechanical Properties of Iron-Cobalt Alloys for Power Applications.” Two iron-cobalt alloys investigated include Hiperco™ alloy 50HS from Carpenter Technology Corporation and HS50 from Telcon Limited. After heat treating at 1300 to 1350° F. for 1 to 2 hours, tensile properties were evaluated for specimens prepared from rolled sheet 0.006 inches thick. Both materials are categorized as near 50—50 iron-cobalt alloys having a B2-ordered microstructure but with small percentages of vanadium to increase ductility and other additions for grain refinement. Alloy 50HS is reported to include, in weight percent, 48.75% Co, 1.90% V, 0.30% Nb, 0.05% Mn, 0.05% Si, 0.01% C, balance Fe whereas HS50 includes 49.5% Co, 0.27% V, 0.45% Ta, 0.04% Mn, 0.08% Si, balance Fe. The alloys annealed at 1300° F. are reported to exhibit the highest strength while those annealed at 1350° F. produced the lowest strength. According to the article, in development of motors, generators and magnetic bearings, it will be necessary to take into consideration mechanical behavior, electrical loss and magnetic properties under conditions of actual use. For rotor applications these conditions are temperatures above 1000° F. and exposure to alternating magnetic fields of 2 Tesla at frequencies of 500 Hz and the clamping of the rotor will result in large compressive axial loads while rotation of the rotor can create tensile hoop stresses of approximately 85 ksi. Because eddy current losses are inversely proportional to resistivity, the greater the resistivity, the lower the eddy current losses and heat generated. Resistivity data documented for 50HS annealed for 1 hour at temperatures of 1300 to 1350° F. indicate a mean room te

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Iron-cobalt-vanadium alloy does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Iron-cobalt-vanadium alloy, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Iron-cobalt-vanadium alloy will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3354946

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.