Underwater lighting fixture with color wheel and method of...

Illumination – Light source and modifier – Including selected wavelength modifier

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C362S035000, C362S101000, C362S364000, C318S062000, C318S085000, C318S102000

Reexamination Certificate

active

06811286

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to the field of illumination, and, more particularly, to a submersible color light. Although the present invention is subject to a wide range of applications, it is especially suited for use in a pool lighting system, and will be particularly described in that context.
BACKGROUND OF THE INVENTION
Pool lights illuminate the water at night for the safety of swimmers and for aesthetic purposes. The illumination emanates from underwater lights affixed to the wall of the pool. As used herein, a pool is used generically to refer to a container for holding water or other liquids. Examples of such containers are recreational swimming pools, spas, and aquariums.
To enhance the aesthetics, some current underwater pool lights use a transparent color filter or shade affixed to the front of the lens of the pool light to filter the light emanating from the lens of the pool light and thus add color to the pool. The color filters come in a variety of colors but only one of these color filters can be affixed to the pool light at a given time. Thus, the color of the pool stays at that particular color that the color filter passes. In order to change the color of the pool, the color filter must be removed from the pool light and a different color filter installed across the lens of the pool light.
As a alternative to these fixed colored filters, a system has been devised whereby a rotating wheel having filters of several colors is provided, such as the system disclosed in U.S. Pat. No. 6,002,216 and incorporated herein by reference. In this arrangement, white light is provided from a single source to at least one fiber optic lens through an optical fiber. Colored light is emitted from each fiber optic lens by passing white light through the color filter wheel which is selectively rotated by a motor in the illuminator. The color of light emitted by multiple illuminators is synchronized by independent circuitry within each illuminator that responds to digital signals in the form of manually interrupted supply current.
However, fiber optic underwater illumination systems have several limitations that lead to the need for the present invention. The first is that their performance is relative to the skill of the installer. Only a well-trained technician is capable of installing a fiber optic system that can adequately illuminate a swimming pool. The availability of qualified training is limited thus the availability of trained installers is limited. Rushed fiber termination or fiber termination performed by an untrained installer can result in more than a 30% decrease in fiber optic system performance and can ultimately result in a costly failure of the total fiber optic system.
The second disadvantage of underwater fiber optic illumination is the limited amount of light delivered to the pool. This results from the light attenuation over distance that is inherent in the fibers' composition and the inefficiencies of focusing available light into the optical fiber at the light source.
A further drawback of fiber optic underwater illumination is in the possibility of retrofitting the millions of existing pools having traditional submersible incandescent lighting fixtures. The feasibility of installing adequately sized fiber optic cable in the existing conduits is limited. These conduits are commonly ½ inch in diameter and are rarely over one inch in diameter. The minimum conduit diameter to carry a single fiber optic cable capable of delivering minimally acceptable light to a pool is one inch and the recommended size is 1½ inches.
An additional limitation of fiber optic systems is the additional cost of the materials and professional installation.
The alternative to colored fiber optic systems, providing colored lenses to submersible incandescent lighting fixtures, can be troublesome as well. These fixtures can be supplied with a colored glass lens to deliver that specific color to the pool. These colored glass lenses are typically limited to how richly they can color the light because the darker (or richer) the lens color, the more light in the form of heat that is trapped in the lens and the fixture. As the lens becomes too hot by absorbing too much light it can break due to thermal expansion or due to the differences in thermal expansion on the hot interior surface of the glass and the cool exterior surface that is in contact with the water. Further, as a result less light is emitted and it may be insufficient to illuminate the pool.
As an alternative to glass lenses, snap on or twist lock plastic colored lenses can be installed over an existing clear glass lens for a considerably simpler method to changing the color of the pool lighting. This method still requires physically lying or kneeling on the edge of the pool an reaching below the water to remove the existing plastic lens and then reaching again into the water to install the next colored plastic lens. Economical transparent colored plastics are also inefficient light transmitters reducing the amount of colored light reaching the pool.
A need therefore exists for pool lights that can easily replace existing self-contained, incandescent lighting fixtures, but having synchronized color wheels without the additional cost of installing fiber optic cables and other drawbacks associated with fiber optic underwater illumination systems. Further, a need exists for colored lenses to be used with incandescent fixtures that do not trap excessive amounts of light and heat.
SUMMARY OF THE INVENTION
The present invention, which tends to address these needs, resides in a pool lighting system. The pool lighting system described herein provides advantages over known pool lighting systems in that it is less difficult and less costly to install than existing pool lighting systems that can provide a variety of synchronized colors to the pool water and can be easily retrofitted to existing incandescent lighting systems.
According to the present invention, each lighting fixture of the pool lighting system comprises a color wheel and an incandescent lamp, wherein the lighting fixture places the color wheel at a predetermined position after a predetermined time subsequent to an alternating-current (AC) source of power being applied to the lighting fixture.
Further, according to the present invention, an underwater lighting fixture includes a lamp housing which is adapted to be installed in a lamp receiving recess in the wall of a swimming pool. The housing has an interior cavity, an open mouth defined by a rim, and a rear opening. A plate is mounted within the housing and is transverse to a longitudinal axis of the housing. The plate has a pair of diametrically opposed openings. A pair of incandescent lamps are positioned at each of the plate openings on one side of the plate and each lamp is provided with a reflector directed toward its plate opening. Secondary reflectors are positioned on the other side of the plate so that the reflectors have mouths at one end which are directed toward the plate openings. Each secondary reflector has a portal at its other end which is directed toward the mouth of the housing. A color wheel which is mounted for rotation in the housing about the longitudinal axis of the housing. The color wheel has a plurality of radial dichroic filter segments which are arranged so that identically colored segments are diametrically opposed on the wheel. The wheel is driven by a motor to sequentially position successive filter segments over each reflector portal. A transparent cover is sealed to the open mouth of the housing and an electrical supply conduit extends through a fluid seal in the rear housing opening.


REFERENCES:
patent: 2848671 (1958-08-01), Mc Donald
patent: 2943185 (1960-06-01), De Mott
patent: 3104815 (1963-09-01), Schultz
patent: 3769503 (1973-10-01), Kim
patent: 3949213 (1976-04-01), Paitchell
patent: 3967170 (1976-06-01), MacDonald et al.
patent: 4617498 (1986-10-01), Ruppert
patent: 5394309 (1995-02-01), Brown
patent: 6002216 (1999-12-01), Mate

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Underwater lighting fixture with color wheel and method of... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Underwater lighting fixture with color wheel and method of..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Underwater lighting fixture with color wheel and method of... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3349700

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.