Method and apparatus for storing image frame with...

Image analysis – Image compression or coding

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C382S128000

Reexamination Certificate

active

06771822

ABSTRACT:

FIELD OF THE INVENTION
This invention generally relates to imaging systems. In particular, the invention relates to the storage of digital images in memory, whether that memory is incorporated in or connected to the imaging system. Although the field of the invention is wide, encompassing digital imaging systems, the preferred embodiment of the invention will be disclosed with reference to an ultrasound imaging system used in medical diagnostics, with the understanding that the invention has application in other types of ultrasound imagers as well as digital imagers other than ultrasound imagers.
BACKGROUND OF THE INVENTION
Conventional ultrasound imagers create two-dimensional images of biological tissue by scanning a focused ultrasound beam in a scan plane and for each transmitted beam, detecting the ultrasound wave energy returned along a respective scan line in the scan plane. A single scan line (or small localized group of scan lines) is acquired by transmitting focused ultrasound energy at a point, and then receiving the reflected energy over time. A B-mode ultrasound image is composed of multiple image scan lines. The brightness of a pixel on the display screen is based on the intensity of the echo returned from the biological tissue being scanned. The outputs of receive beamformer channels are coherently summed to form a respective pixel intensity value for each sample volume in the scanned object. These pixel intensity values are log-compressed, scan-converted and then displayed as a B-mode image of the anatomy which was scanned.
If the ultrasound probe is swept over an area of body, a succession of image frames (corresponding to spaced slices intersecting the body being examined) can be displayed on the monitor. In one type of ultrasound imaging system, a long sequence of the most recent images are stored and continuously updated automatically in a cine memory on a first-in, first-out basis. The cine memory is like a circular image buffer that runs in the background, capturing image data that is displayed in real time to the user. The cine memory acts as a buffer for transfer of images to digital archival devices via the host computer. When the user freezes the system (by operation of an appropriate device on an operator interface), the user has the capability to view image data previously captured in cine memory. The image loop stored in cine memory can be reviewed on the display monitor via trackball control incorporated in the operator interface, and a section of the image loop can be selected for hard disk storage. Any acquired or projected image can be stored internally on the system hard disk or on a magneto-optical disk (MOD) inserted in a disk drive.
In addition to storing images internally, modern imaging systems need to be able to transfer images to various types of remote devices, such as storage devices, via a communications network. To successfully transfer images, the relevant networking features of the imager must be compatible with the networking features of the destination remote device. In particular, the imager must place the data to be transferred in a format which can be handled by the destination remote device. An attempt to accomplish the foregoing is the adoption of the DICOM (Digital Imaging and Communications in Medicine) standards, which specify the conformance requirements for the relevant networking features. The DICOM standards are intended for use in communicating medical digital images among printers, workstations, acquisition modules (such as an ultrasound imaging system) and file servers. The acquisition module is programmed to transfer data in a format which complies with the DICOM standards, while the receiving device is programmed to receive data which has been formatted in compliance with those same DICOM standards.
The DICOM system is designed to facilitate the communication of digital images of different types, e.g., X-ray, computerized tomography, magnetic resonance and ultrasound imaging. All DICOM activities are handled in a queued manner by application software running on a host computer incorporated in the imager. In one type of ultrasound imager, the user can select any image in cine memory to be sent in DICOM format via a LAN to a remote device having DICOM capability. The host computer of the ultrasound imaging system is programmed with DICOM system software which facilitates transmission of image frames from the cine memory to the remote DICOM device via the host computer hard disk and the LAN.
In the conventional ultrasound imager, images can be sent to a storage device in either an automatic or a manual mode, depending on the user configuration. When the automatic mode is configured, console keys are used to capture the image and to store it on the hard disk. The request is queued to a DICOM queue manager (preferably implemented in software), which requests an association with the destination remote storage device. After the association with the remote storage device has been opened, the queue manager “pushes” the image to the remote storage device without user intervention. The transfer is done in the background while scanning or other operator activities continue. In the manual mode, the captured images are archived on the hard disk or on a MOD during the exam(s). Upon completion of the exam(s) the images are tagged using an archive menu and queued to any of the network devices that have been configured on the imager. The images are sent sequentially in the background while scanning or other operator activities proceed.
One of the current problems in the medical industry is the large amount of digital image data which needs to be stored, requiring vast memory capacity. For example, all of the images produced by an ultrasound imaging machine are of static sizes (about 385 kilobytes for black/white image frames and about 1 megabyte for color images. As the number of digital images being saved increases, so does the amount of hard disk space which is required. Because increases in the hard disk space capacity result in corresponding increases in operating costs, hospitals and clinic are seeking ways to decrease the amount of hard disk space used.
One solution to the foregoing problem is data compression. Data compression involves techniques for storing data in a format that requires less space than usual. Compressing data is the same as packing data. There are a variety of data compression techniques.
Lossless compression refers to data compression techniques in which no data is lost. For most types of data, lossless compression techniques can reduce the space needed by only about 50%, i.e., lossless compression techniques achieve a compression ratio at best of about 2:1. For greater compression, one must use a lossy compression technique.
Lossy compression refers to data compression techniques in which some amount of data is lost. Lossy compression technologies attempt to eliminate redundant or unnecessary information. Only certain types of data, e.g., graphics, audio, and video, can tolerate lossy compression. One known lossy data compression technique is JPEG, which stands for Joint Photographic Experts Group. JPEG is a lossy compression technique for color images. Although it can reduce files sizes to about 5% of their normal size, i.e., achieving a compression ratio of up to 20:1, some of the original data is lost in the compression. The resulting image degradation can be detrimental in the context of medical diagnostic imaging.
However, it is possible to compress images, using lossy techniques, with a compression ratio of up to 20:1, while still maintaining diagnostic quality. It should be noted that the compression ratio would vary from one image to the next in terms of maintaining diagnostic quality. For example, an image with primarily black on it will support a higher compression ratio than an image that had a more complex image with multiple colors. Now, it is clear that not all images will have the same compression ratio. As used herein, the term “diagnostic quality” means that the images have sufficient

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for storing image frame with... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for storing image frame with..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for storing image frame with... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3346502

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.