Hip replacement system having fat lubricant

Prosthesis (i.e. – artificial body members) – parts thereof – or ai – Implantable prosthesis – Bone

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06692529

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to various medical devices used for the replacement of human joints. More particularly, the present invention relates to methods and apparatus for replacing human joints, in particular, hip joints. Additionally, the present invention relates to systems for automatically lubricating artificial joints.
2. Description of Related Art
Prostheses for the replacement of hip joints are already known. Originally, only the ball-end on the head of the femur could be replaced, but it has since proved possible to replace either part of the hip joint, that is to say, the acetabulum or the ball-end on the head of the femur.
The number of those living with hip prostheses is increasing more and more at the present time. The number of implanted artificial hip joints is estimated to be two thousand per day. The further increase of the cases into the millions is accounted for by the fact that the diseases of the hip joints due to wear are increasing numerically along with the rapid rise of the age of the population accompanied by a corresponding development of the medical technique.
Existing techniques for the carrying out of the hip replacement operation are extremely invasive. As such, the patient will require long periods of rehabilitation and long periods of hospital stay. Since a great deal of biological material is removed or replaced in the patient, a great amount of time is required for healing. Furthermore, the operative procedures are very time-consuming and very expensive.
Existing hip replacement techniques initially require the exposure of the femur. The hip must be dislocated so that the level of the neck resection can be measured proximally from the lesser femoral head based on the preoperatively templated measurement. In addition, the center of the femoral head is approximated and marked. A right angle retractor is used to judge the anatomical relationship for the later restoration of leg length and offset. The femoral neck cut is made by using a femoral broach as a template, by using the femoral neck cutting guide, or by using a femoral resection template. The neck cut is made slightly horizontal, which allows the use of the calcar planer to obtain a smooth surface for eventual flush collar-calcar seating.
Following the removal of the femoral head, a partial superior and anterior capsulectomy is performed to allow exposure of the anterior acetabular rim. Hohmann or similar retractors are placed over the anterior rim for retraction of the shaft anteriorly. Posterior and superior Charnley pin retractors are placed in the interval between the capsule and the labrum to allow complete exposure. The acetabular rim is then completely exposed by thorough removal of the acetabular labrum.
Once acetabular exposure has been accomplished, reaming is initiated. Reaming continues until concentric removal of all remaining acetabular cartilage and the exposure of punctate bleeding in the subchondral plate is achieved. The medial landmark for correct depth is the acetabular floor visualized through the acetabular fossa. A cup sizer corresponding to the last reamer used is placed on a handle and inserted into the acetabulum. The acetabular cup sizers are the same size as the actual implant and should fit snugly into the acetabulum.
It is then necessary to insert the cup. To correctly judge the appropriate component position, a down-sized acetabular sizer can be easily inserted and positioned into the acetabulum so as to allow removal of any overhanging anterior, posterior or superior osteophytes. Once these steps have been completed, the correct acetabular shell is locked into the acetabular positioner and driven into a fully seated position. Screws can then be used for supplemental fixation.
After the placement of the acetabular component, attention is then turned to the femur. The femoral canal is identified with a hand-held reamer. Power reaming is initiated with a conical reamer. The reamer is advanced slowly within the canal until the proximal cutting edge is at the level of the calcar. As the reamer is withdrawn, lateral pressure is exerted to insure proper lateralization within the canal. Reaming proceeds in one millimeter or two millimeter increments depending on the bone density. Once the appropriate conical reamer has been passed, rasping is initiated. The rasp should be oriented so that the mediolateral axis of the rasp is parallel to the anatomic mediolateral axis of the femoral neck. The rasp is impacted until it is slightly below the level of the initial calcar cut. Subsequently, larger rasps are used until the final rasping is completed with the appropriate size. With the proper size rasp in place, the calcar is planed flush by using the calcar trimmer. With the final rasp still in place, provisional heads
ecks are selected to determine the appropriate neck length in order to restore the lateral offset. Trial reduction is carried out to assure that proper leg length and stability are achieved. The stem corresponding to the size of the final rasp used is threaded onto the stem inserter/extractor and impacted into a fully seated position. The collar should seat flush against the medial calcar and the lateral shoulder should seat against the femoral head. After fully seating the femoral component, the appropriate modular head is impacted into the femoral neck. The hip is now ready to be reduced.
Presently, there are various hip replacement systems wherein a polymeric lining is used on the socket component. The metallic ball is received within this polymeric lining. The intention of the polymeric lining is to provide a very smooth and low friction movement between the metallic ball and the wall of the socket. Unfortunately, the repeated contact between the metallic surface of the ball member and the polymeric lining of the socket becomes worn over time. A need exists for being able to provide a lubricant into the space between the exterior surface of the ball member and the polymeric lining of the socket component. There is a general reluctance to use hydrocarbon-based lubricants in view of the potential incompatibility with the human body.
Other hip prosthesis have utilized polymeric linings located between a metallic shell and a metallic shaft of the stem portion of the prosthesis. The purpose of the lining is to allow the prosthesis to better conform to the movement of the human body and also to provide a cushioning effect between the metallic shell and the metal shell of the stem portion. It has been found that, over time, the polymeric lining within the stem portion can become worn so that replacement is required.
In the past, various patents have related to hip replacement operations and to hip prosthesis.
U.S. Pat. No. 3,748,662, issued on Jul. 31, 1973 to A. J. Helfet, describes a surgical procedure for replacing the natural components of a bicondylar joint in a human limb. The prosthetic implant has two pairs of coacting male and female condylar components. The male and female components which replace the natural lateral condyles are spherical or spheroidal in shape to simulate a ball and sock joint. Both male components and both female components can be formed on respective rigid carriers or they may optionally be separate for individual fixation to the patient's limb.
U.S. Pat. No. 3,894,297, issued on Jul. 15, 1975 to Mittelmeier et al., describes a hip joint prosthesis which comprises a substantially frustoconical acetabulum member provided with supporting ribs in the form of a tapering thread and a prosthesis shaft provided with circular supporting ribs allowing anchorage of the prosthesis and the acetabulum member without using a cement or other adhesive.
U.S. Pat. No. 4,187,559, issued on Feb. 12, 1980 to Grell et al., describes a body joint endoprosthesis including an anchoring member having a shaft anchored in a first bone and a pivot member connected to the anchoring member by a pivot joint. The pivot member includes a first body joint member and a support element that bears aga

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Hip replacement system having fat lubricant does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Hip replacement system having fat lubricant, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Hip replacement system having fat lubricant will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3340630

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.