Process for purifying single-wall carbon nanotubes and...

Chemistry of inorganic compounds – Carbon or compound thereof – Elemental carbon

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C423S460000

Reexamination Certificate

active

06752977

ABSTRACT:

BACKGROUND OF THE INVENTION
Fullerenes are spheroidal, closed-cage molecules consisting essentially of sp
2
-hybridized carbons typically arranged in hexagons and pentagons. Fullerenes, such as C
60
, also known as Buckminsterfullerene, more commonly, “buckyballs,” and C
70
, have been produced from vaporized carbon at high temperature. Presence of a transition metal catalyst with the high temperature vaporized carbon results in the formation of single-wall tubular structures which may be sealed at one or both ends with a semifullerene dome. These carbon cylindrical structures, known as single-wall carbon nanotubes or, commonly, “buckytubes” have extraordinary properties, including both electrical and thermal conductivity and high strength.
Nested single-wall carbon cylinders, known as multi-wall carbon nanotubes possess properties similar to the single-wall carbon nanotubes, however, single-wall carbon nanotubes have fewer defects, rendering them stronger, more conductive, and typically more useful than multi-wall carbon nanotubes of similar diameter. Single-wall carbon nanotubes are believed to be much more free of defects than are multi-wall carbon nanotubes because multi-wall carbon nanotubes can survive occasional defects by forming bridges between the unsaturated carbon of the neighboring cylinders, whereas single-wall carbon nanotubes have no neighboring walls for defect compensation.
In defining the size and conformation of single-wall carbon nanotubes, the system of nomenclature described by Dresselhaus, et al.,
Science of Fullerenes and Carbon Nanotubes,
1996, San Diego: Academic Press, Ch. 19, will be used. Single-wall tubular fullerenes are distinguished from each other by a double index (n, m), where n and m are integers that describe how to cut a single strip of hexagonal graphite such that its edges join seamlessly when the strip is wrapped onto the surface of a cylinder. When n=m, the resultant tube is said to be of the “arm-chair” or (n, n) type, since when the tube is cut perpendicularly to the tube axis, only the sides of the hexagons are exposed and their pattern around the periphery of the tube edge resembles the arm and seat of an arm chair repeated n times. When m=0, the resultant tube is said to be of the “zig zag” or (n,
0
) type, since when the tube is cut perpendicular to the tube axis, the edge is a zig zag pattern. Where n≠m and m≠0, the resulting tube has chirality. The electronic properties are dependent on the conformation, for example, arm-chair tubes are metallic and have extremely high electrical conductivity. Other tube types are metallic, semimetals or semi-conductors, depending on their conformation. Regardless of tube type, all single-wall nanotubes have extremely high thermal conductivity and tensile strength.
Several methods of synthesizing fullerenes have developed from the condensation of vaporized carbon at high temperature. Fullerenes, such as C
60
and C
70
, may be prepared by carbon arc methods using vaporized carbon at high temperature. Carbon nanotubes have also been produced as one of the deposits on the cathode in carbon arc processes.
Single-wall carbon nanotubes have been made in a DC arc discharge apparatus by simultaneously evaporating carbon and a small percentage of Group VIIIb transition metal from the anode of the arc discharge apparatus. These techniques allow production of only a low yield of carbon nanotubes, and the population of carbon nanotubes exhibits significant variations in structure and size.
Another method of producing single-wall carbon nanotubes involves laser vaporization of a graphite substrate doped with transition metal atoms (such as nickel, cobalt, or a mixture thereof) to produce single-wall carbon nanotubes. The single-wall carbon nanotubes produced by this method tend to be formed in clusters, termed “ropes,” of about 10 to about 1000 single-wall carbon nanotubes in parallel alignment, held by van der Waals forces in a closely packed triangular lattice. Nanotubes produced by this method vary in structure, although one structure tends to predominate. Although the laser vaporization process produces an improved yield of single-wall carbon nanotubes, the product is still heterogeneous, and the nanotubes tend to be too tangled for many potential uses of these materials. In addition, the laser vaporization of carbon is a high energy process.
Another way to synthesize carbon nanotubes is by catalytic decomposition of a carbon-containing gas by nanometer-scale metal particles supported on a substrate. The carbon feedstock molecules decompose on the particle surface, and the resulting carbon atoms then precipitate as part of a nanotube from one side of the particle. This procedure typically produces imperfect multi-walled carbon nanotubes.
Another method for production of single-wall carbon nanotubes involves the disproportionation of CO to form single-wall carbon nanotubes and CO
2
on alumina-supported transition metal particles comprising Mo, Fe, Ni, Co, or mixtures thereof. This method uses inexpensive feedstocks in a moderate temperature process. However, the yield is limited due to rapid surrounding of the catalyst particles by a dense tangle of single-wall carbon nanotubes, which acts as a barrier to diffusion of the feedstock gas to the catalyst surface, limiting further nanotube growth.
Control of ferrocene/benzene partial pressures and addition of thiophene as a catalyst promoter in an all gas phase process can produce single-wall carbon nanotubes. However, this method suffers from simultaneous production of multi-wall carbon nanotubes, amorphous carbon, and other products of hydrocarbon pyrolysis under the high temperature conditions necessary to produce high quality single-wall carbon nanotubes.
More recently, a method for producing single-wall carbon nanotubes has been reported that uses high pressure CO as the carbon feedstock and a gaseous transition metal catalyst precursor as the catalyst. (“Gas Phase Nucleation and Growth of Single-Wall Carbon Nanotubes from High Pressure Carbon Monoxide,” International Pat. Publ. WO 00/26138, published May 11, 2000 (“WO 00/26138”), incorporated by reference herein in its entirety). This method possesses many advantages over other earlier methods. For example, the method can be done continuously, and it has the potential for scale-up to produce commercial quantities of single-wall carbon nanotubes. Another significant advantage of this method is its effectiveness in making single-wall carbon nanotubes without simultaneously making multi-wall nanotubes. Furthermore, the method produces single-wall carbon nanotubes in relatively high purity, such that less than about 10 wt % of the carbon in the solid product is attributable to other carbon-containing species, which includes both graphitic and amorphous carbon.
All known processes for formation of single-wall nanotubes involve a transition-metal catalyst, residues of which are invariably present in the as-produced material. Likewise, these processes also entail production of varying amounts of carbon material that is not in the form of single-wall nanotubes. In the following, this non-nanotube carbon material is referred to as “amorphous carbon.”
There are chemical processes involving single-wall carbon nanotube manipulation for specific applications, such as, for example, “Chemical Derivatization Of Single-Wall Carbon Nanotubes To Facilitate Solvation Thereof; And Use Of Derivatized Nanotubes,” International Pat. Publ. WO 00/17101, published Mar. 30, 2000, and “Carbon Fibers Formed From Single-Wall Carbon Nanotubes,” International Pat. Publ. WO 98/39250, published Sep. 11, 1998, both of which are incorporated by reference herein. Many of these manipulation processes involve chemical reaction of the single-wall carbon nanotube sides and/or ends with other chemicals. These processes also often involve the physical interaction (through van der Waals or other inter-molecular forces) of nanotubes with one another or interaction of nanotubes with other matter within which they are susp

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Process for purifying single-wall carbon nanotubes and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Process for purifying single-wall carbon nanotubes and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Process for purifying single-wall carbon nanotubes and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3329117

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.