Data structure and methods for providing an interactive...

Interactive video distribution systems – Operator interface – To facilitate tuning or selection of video signal

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C725S041000, C725S135000, C725S040000, C348S563000, C348S384100, C348S423100, C348S568000, C375S240250

Reexamination Certificate

active

06754905

ABSTRACT:

BACKGROUND OF THE DISCLOSURE
The invention relates to communications systems in general and, more specifically, the invention relates to an interactive electronic program guide suitable for use in an interactive video information delivery system.
In several communications systems the data to be transmitted is compressed so that the available bandwidth is used more efficiently. For example, the Moving Pictures Experts Group (MPEG) has promulgated several standards relating to digital data delivery systems. The first, known as MPEG-1, refers to the ISO/IEC standards 11172 and is incorporated herein by reference. The second, known as MPEG-2, refers to the ISO/IEC standards 13818 and is incorporated herein by reference. A compressed digital video system is described in the Advanced Television Systems Committee (ATSC) digital television standard document A/53, and is incorporated herein by reference.
The above-referenced standards describe data processing and manipulation techniques that are well suited to the compression and delivery of video, audio and other information using fixed or variable length digital communications systems. In particular, the above-referenced standards, and other “MPEG-like” standards and techniques, compress, illustratively, video information using intra-frame coding techniques (such as run-length coding, Huffman coding and the DIVA 070 like) and inter-frame coding techniques (such as forward and backward predictive coding, motion compensation and the like). Specifically, in the case of video processing systems, MPEG and MPEG-like video processing systems are characterized by prediction-based compression encoding of video frames with or without intra- and/or inter-frame motion compensation encoding.
Over the past few years, television has seen a transformation in the variety of means by which its programming is distributed to consumers. Cable television systems are doubling or even tripling system bandwidth by migrating to hybrid fiber coaxial (HFC) cable as an information delivery medium. Many consumers have turned to direct broadcast satellite (DBS) systems to receive higher quality (with respect to NTSC) video imagery. Other video information delivery approaches using high bandwidth digital technologies, intelligent two way set top boxes and other methods are used by information providers to offer services that are differentiated from standard cable and over the air broadcast systems.
With this increase in bandwidth, the number of programming choices has also increased. Leveraging off the availability of more intelligent set top boxes, several companies such as Starsight® and Prevue™ Guide have developed elaborate systems for providing an interactive listing of the vast array of channel offerings, expanded textual information about individual programs, the ability to look forward to plan television viewing as much as several weeks in advance, and the option of automatically programming a VCR to record a future broadcast of a television program.
An interactive digital video on demand (VOD) service known as the DIVA system is manufactured by DIVA Systems Corporation of Menlo Park, Calif. The DIVA system distributes audio-visual information to individual subscribers utilizing MPEG-like information streams. DIVA subscribers utilize intelligent set top terminals (STT).
Unfortunately, the existing program guides have several drawbacks. They tend to require a lot of memory, some of them needing DIVA 070 upwards of one megabyte of set top terminal memory. They are typically very slow to acquire their current database when they are turned on for the first time or are subsequently restarted (e.g., a large database may be downloaded to a set top terminal using only a vertical blanking interval (VBI) data insertion technique). Disadvantageously, such slow database acquisition may result in out of date database information or, in the case of a pay per view (PPV) or video on demand (VOD) system, limited scheduling flexibility for the information provider. Additionally, the user interface to existing program guides does not usually look like a typical television control interface; rather the user interface looks like a 1980s style computer display (i.e., blocky, ill-formed text and/or graphics).
Therefore, it is seen to be desirable to provide a method and apparatus for providing the functionality of electronic program guide in a manner tending to reduce the above-described problems.
SUMMARY OF THE INVENTION
The invention provides an interactive electronic program guide that isolates an interaction model at the set-top box level, where no context is associated with any user interaction, and where merely the manipulation of audio and visual elements representing, applying, removing and shifting emphasis from one area or another. All items containing contextual information reside in a centralized location where they will be processed and the management of network resources executed in a manner to enable the request context-based service request or transition.
The invention works by combining the use of broadcast digital video streams with video-on-demand streams to produce a compelling audiovisual user interface. The invention uses an intelligent set top boxes ability to manipulate a graphics overlay plane displayed in conjunction with a video image on an intelligent analog or digital set top box. The system allows the interactions to carry the user from broadcast (or narrowcast) video stream to broadcast (or narrowcast) video stream, from broadcast (or narrowcast) video stream to pointcast video stream, and from pointcast video stream to broadcast (or narrowcast) video stream.
Guide and image regions of the IEPG displays are provided within video streams broadcast, narrowcast or pointcast video streams provided by the head end. That is, the program guide information is assembled at the head end and provided as video information to the STTs within the system. Manipulation of video layer objects is accomplished by proxy manipulations of graphic layer objects. The STT provides (beyond tuning, demultiplexing, decoding and such operations) the ability to highlight or emphasize object and select a highlighted or emphasized object. The graphic information manipulated by the STT is received via a data stream (i.e., a data PID), auxiliary data, private data and the like. Advantageously, since there is no local storage of an entire program guide database, memory resources of the STT are conserved. Rather, information sufficient to e.g., describe a highlighted program title is included within the aforementioned data stream, which may be contemporaneously transmitted to the STT along with the video stream including the channel group/time slots including the program title.
A program guide according to one embodiment of the invention comprises: a video layer comprising a plurality of video objects including title objects, each title object having associated with it a channel and at least one time slot, the video layer being formed in response to a received video stream; and a graphics layer comprising a plurality of graphics objects including title overlay objects, each of the title overlay objects selectively imparting at least a visual de-emphasis to a respective title object in the video layer, the visual de-emphasis being imparted to title objects not being associated with a desired time slot.
In another embodiments of the invention, the opacity level of the title overlay object is increased to impart the visual de-emphasis to a respective title object. Optionally, the title objects subjected to de-emphasis are substantially hidden.
In another embodiments of the invention a color of the title overlay object is adapted to impart the visual de-emphasis to a respective title object.


REFERENCES:
patent: 4290063 (1981-09-01), Traster
patent: 4437093 (1984-03-01), Bradley
patent: 4496976 (1985-01-01), Swanson et al.
patent: 4520356 (1985-05-01), O'Keefe et al.
patent: RE32187 (1986-06-01), Barda et al.
patent: 4600921 (1986-07-01), Thomas
patent: 4633297 (1986-12-01), Skerlo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Data structure and methods for providing an interactive... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Data structure and methods for providing an interactive..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Data structure and methods for providing an interactive... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3324883

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.