Color imager bar based spectrophotometer for color printer...

Optics: measuring and testing – By shade or color – With color transmitting filter

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C356S419000, C356S320000, C347S019000, C250S226000

Reexamination Certificate

active

06690471

ABSTRACT:

Disclosed in the embodiments herein is an improved, low cost, plural color spectrophotometer for color calibration or correction systems, highly suitable to be used for, or incorporated into, the color calibration or control of various color printing systems or other on-line color control or color processing systems. The exemplary disclosed spectrophotometer desirably utilizes (incorporates in part) a low cost component or part of a low cost commercially available multiple photo-sites, plural spectral responsive, imaging array or bar, such as heretofore used for imaging colored documents in various scanners, digital copiers, and multifunction products. Also disclosed is a relatively simple modification thereof to provide additional differently spectral responsive photo-sites.
Also disclosed herein is a low cost spectrophotometer which may employ a small limited number of different spectra LED or other illumination sources, yet providing multiple data outputs from a low cost photosensor having plural different spectral responsive photo-sites detecting light reflected by a colored test target area sequentially illuminated by those illumination sources (or continuously white light illuminated), to rapidly provide broad spectrum data from a colored test surface.
By way of background, examples of full color document imaging bars include those used in various document scanning systems of various well known Xerox Corporation commercial products (including some being alternatively used for black and white imaging) such as the Document Center 255DC™ products, or the Document Center Color Series 50™ products. Some examples of patents relating to semiconductor color imager bars or segments thereof and their operation or circuitry include Xerox Corporation U.S. Pat. No. 5,808,297, issued Sep. 15, 1998; U.S. Pat. No. 5,543,838, issued Aug. 6, 1996; U.S. Pat. No. 5,550,653, issued Aug. 27, 1996; U.S. Pat. No. 5,604,362, issued Feb. 18, 1997; and U.S. Pat. No. 5,519,514, issued May 21, 1996. Typically, such color imaging bars come already provided with at least three different color filters, such as red, green and blue, overlying three rows of closely spaced light sensor elements (photo-sites), to provide electrical output signals corresponding to the colors of the document image being scanned. Such imaging bars are typically formed by edge butting together a number of individual imaging chips, each having such multiple tiny and closely spaced photo-sites. Typically, there-are three rows of such photo-sites on each such chip, as in the assembled imaging bar, with said integral filters for red, green and blue, respectively.
Because of the high volumes in which such commercial color imaging bars are made for such products, it has been discovered that their manufacturers can provide, at low cost, a commercial source of said single imaging chip components thereof. The fact that each such chip can provide electrical signals from multiple light sensor elements (photo-sites) in at least three rows of different spectral responses which are closely enough spaced together so as to be simultaneously illuminated by a relatively small area of illumination, is effectively utilized in the spectrophotometer of the embodiments herein. (It will be understood that the term “chip” as used herein does not exclude the use of two or more such chips, either integrally abutted or separately positioned.)
However, it is not believed that heretofore such plural sensors chips for plural color sensing, which are normally put together in series for imaging bars for document scanning, have ever been used in spectrophotometers. These chips themselves are not normally even sold individually. The disclosed embodiment illustrates how that may be done, to provide a compact and lower cost spectrophotometer especially suitable for on-line color control systems for sensing the colors of moving printed sheets or other color materials.
Although not limited thereto, the exemplary spectrophotometer of the embodiment herein is shown and described herein in desirable combination as an integral part of an automatic on-line continuous color table correction system of a color printer, in which this low cost spectrophotometer may be affordably provided in the output path of each color printer for automatic measurement of printed color test patches of printer output, without any manual effort or intervention being required. Such color control systems are further described in the above and below cited co-pending applications and patents. For example, in Xerox Corp. U.S. Pat. No. 6,178,007 B1, issued Jan. 23, 2001, based on U.S. application Ser. No. 08/786,010, filed Jan. 21, 1997 by Steven J. Harrington, entitled “Method For Continuous Incremental Color Calibration For Color Document Output Terminals.” The European patent application equivalent thereof was published by the European Patent Office on Jul. 22, 1998 as EPO Publication No. 0 854 638 A2. Also, Xerox Corp. U.S. Pat. No. 6,222,648, issued Apr. 24, 2001, based on U.S. application Ser. No. 08/787,524, also filed Jan. 21, 1997, by Barry Wolf, et al, entitled “On Line Compensation for Slow Drift of Color Fidelity in Document Output Terminals (DOT)”. Also noted in this regard are Xerox Corp. U.S. Pat. No. 6,157,469, issued Dec. 5, 2000 and filed May 22, 1998 by Lingappa K. Mestha; Apple Computer, Inc. U.S. Pat. No. 5,881,209, issued 1999; U.S. Pat. No. 5,612,902 issued Mar. 18, 1997 to Michael Stokes, and other patents and applications further noted below.
A low cost, relatively simple, spectrophotometer, as disclosed herein, is thus particularly (but not exclusively) highly desirable for such a “colorimetry” function for such an on-line printer color correction system. Where at least one dedicated spectrophotometer is provided in each printer, its cost and other factors becomes much more significant, as compared to the high cost (and other unsuitability's for on-line use) of typical laboratory spectrophotometers.
An early patent of interest as to using a colorimeter in the printed sheets output of a color printer is Xerox Corp. U.S. Pat. No. 5,748,221, issued May 5, 1998 to Vittorio Castelli, et al, filed Nov. 1, 1995 (D/95398). This patent is also of particular interest here for its Col. 6, lines 18 to 28 description of measuring color:
“. . . by imaging a part of an illuminated color patch on three amorphous silicon detector elements after filtering with red, green and blue materials. The technology is akin to that of color input scanners. The detector outputs can be used as densitometric values to assure color consistency. Calibration of the resulting instrument outputs against measurement by laboratory calorimeters taken over a large sample of patches made by the toners of the printer of interest allows mapping to absolute color coordinates (such as L*a*b*).”
As disclosed in above-cited references, automatic on-line color recalibration systems can be much more effective with an on-line color measurement system where a spectrophotometer may be mounted in the paper path of the moving copy sheets in the printer, preferably in the output path after fusing or drying, without having to otherwise modify the printer, or interfere with or interrupt normal printing, or the movement of the printed sheets in said paper path, and yet provide accurate color measurements of test color patches printed on the moving sheets as they pass the spectrophotometer. That enables a complete closed loop color control of a printer.
However, it should be noted that color measurements, and/or the use of color measurements for various quality or consistency control functions, are also important for many other different technologies and applications, such as in the production of textiles, wallpaper, plastics, paint, inks, etc. Thus, the disclosed color detection system may have applications in various such other fields where these materials or objects are to be color tested. Although the specific exemplary embodiment herein is part of a preferred automatic recalibration system with an on-line color printer co

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Color imager bar based spectrophotometer for color printer... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Color imager bar based spectrophotometer for color printer..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Color imager bar based spectrophotometer for color printer... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3324465

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.