Abrasive product, method of making and using the same, and...

Abrasive tool making process – material – or composition – Miscellaneous

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C051S298000, C051S295000, C051S297000, C051S307000, C051S308000, C051S309000

Reexamination Certificate

active

06833014

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to flexible abrasive products which include a backing which bears shaped abrasive structures, a method of making and using the same, and an apparatus for making the same.
1. Background Art
Abrasive products are available in any of a variety of types, each generally being designed for specific applications and no particular type providing a universal abrading tool for all applications. The various types of abrasive products include, for example, coated abrasives, bonded abrasives, and low density or nonwoven abrasive products (sometimes called surface conditioning products). Coated abrasives typically comprise abrasive granules generally uniformly distributed over and adhered to the surface of a flexible backing. Bonded abrasives, a typical example of which is a grinding wheel, generally comprises abrasive material rigidly consolidated together in a mass in the form of a rotatable annulus or other shapes such as a block-shaped honing stone. Low density or nonwoven abrasive products typically include an open, lofty, three-dimensional fiber web impregnated with adhesive which does not alter the open character of the web and also adheres abrasive granules to the fiber surfaces of the web.
Bonded abrasive products such as grinding wheels are very rigid and, thus, not conformable to workpieces which have a complex surface. Coated abrasives are often used as abrasive belts or abrasive discs. Coated abrasive belts and discs have a high initial cut rate and produce a high surface roughness when new, but each of these properties drops off very rapidly in use. Coated abrasive products also have a somewhat limited degree of conformability when they are supported in an abrading machine. While use of abrasive belts on soft back-up wheels provides some degree of conformability, the lack of stretchability of the coated abrasive backing limits somewhat its conformability.
Abrasive products are used industrially, commercially, and by individual consumers to prepare any of a variety of materials for use or for further processing. Exemplary uses of abrasive products include preliminary preparation of a surface before priming or painting, cleaning the surface of an object to remove oxidation or debris and grinding or abrading an object to obtain a specific shape. In these applications, abrasive products may be used to grind a surface or workpiece to a certain shape or form, to abrade a surface to clean or to facilitate bonding of a coating such as paint, or to provide a desired surface finish, especially a smooth or otherwise decorative finish.
The grinding or finishing properties of the abrasive product may be tailored to some degree to provide a desired aggressive level of removal of material from a surface being abraded (“cut”), balanced with the need for a particular surface finish (“finish)”. These needs may also be balanced with the need for a relatively long, useful life for the abrasive product. Typically, however, the cut and finish performance during the useful life of an abrasive product is not as consistent as desired. That is, during the useful life of typical abrasive products, the cut and finish of the product may vary with cumulative use. A need, therefore, exists for abrasive products with increased consistency of cut and finish. Such new products that also bridge the cut and finish performance between coated abrasive products and surface conditioning products would be especially useful.
Many methods of making abrasive products employ liquid or solvent-borne volatile organic binder materials which result in the unwanted creation of volatile organic compound (VOC) emissions. Some binder materials are water-borne and, thus, require an unwanted expense because of the additional energy cost in removing the water. Moreover, some methods of making abrasive products are complex, requiring multiple steps and complex equipment. A simplified process to produce such new abrasive products providing economical short product cycles and low or minimal volatile organic waste products would be particularly useful.
Thus, need exists for a flexible abrasive product which has a tailored cutting ability and a long, useful life which can be made in a simple method without producing undesirable amounts of volatile organic compound waste products.
2. Other Related Art
U.S. Pat. No. 2,115,897 (Wooddell et al.) teaches an abrasive article having a backing having attached thereto by an adhesive a plurality of bonded abrasive segments. These bonded abrasive segments can be adhesively secured to the backing in a specified pattern.
U.S. Pat. No. 3,048,482 (Hurst) discloses an abrasive article comprising a backing, a bond system and abrasive granules that are secured to the backing by the bond system. The abrasive granules are a composite of abrasive grains and a binder which is separate from the bond system. The abrasive granules are three dimensional and are preferably pyramidal in shape. To make this abrasive article, the abrasive granules are first made via a molding process. Next, a backing is placed in a mold, followed by the bond system and the abrasive granules. The mold has patterned cavities therein which result in the abrasive granules having a specified pattern on the backing.
U.S. Pat. No. 3,605,349 (Anthon) pertains to a lapping type abrasive article. Binder and abrasive grain are mixed together and then sprayed onto the backing through a grid. The presence of the grid results in a patterned abrasive coating.
Great Britain Patent Application No. 2,094,824 (Moore) pertains to a patterned lapping film. The abrasive/binder resin slurry is prepared and the slurry is applied through a mask to form discrete islands. Next, the binder resin is cured. The mask may be a silk screen, stencil, wire or a mesh.
U.S. Pat. Nos. 4,644,703 (Kaczmarek et al.) and 4,773,920 (Chasman et al.) concern a lapping abrasive article comprising a backing and an abrasive coating adhered to the backing. The abrasive coating comprises a suspension of lapping size abrasive grains and a binder cured by free radical polymerization. The abrasive coating can be shaped into a pattern by a rotogravure roll.
Japanese Patent Application No. JP 62-238724A (Shigeharu, published Oct. 19, 1987) describes a method of forming a large number of intermittent protrusions on a substrate. Beads of pre-cured resin are extrusion molded simultaneously on both sides of the plate and subsequently cured.
U.S. Pat. No. 4,930,266 (Calhoun et al.) teaches a patterned abrasive sheeting in which the abrasive granules are strongly bonded and lie substantially in a plane at a predetermined lateral spacing. In this invention the abrasive granules are applied via an impingement technique so that each granule is essentially individually applied to the abrasive backing. This results in an abrasive sheeting having a precisely controlled spacing of the abrasive granules.
U.S. Pat. No. 5,014,468 (Ravipati et al.) pertains to a lapping film intended for ophthalmic applications. The lapping film comprises a patterned surface coating of abrasive grains dispersed in a radiation cured adhesive binder. To make the patterned surface an abrasive/curable binder slurry is shaped on the surface of a rotogravure roll, the shaped slurry removed from the roll surface and then subjected to radiation energy for curing.
U.S. Pat. No. 5,107,626 (Mucci) teaches a method of providing a patterned surface on a substrate by abrading with a coated abrasive containing a plurality of precisely shaped abrasive composites. The abrasive composites are in a non-random array and each composite comprises a plurality of abrasive grains dispersed in a binder.
Japanese Patent Application No. 02-083172 (Tsukada et al., published Mar. 23, 1990) teaches a method of a making a lapping film having a specified pattern. An abrasive/binder slurry is coated into indentations in a tool. A backing is then applied over the tool and the binder in the abrasive slurry is cured. Next, the resulting coated abrasive is removed from the tool. The binder can

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Abrasive product, method of making and using the same, and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Abrasive product, method of making and using the same, and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Abrasive product, method of making and using the same, and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3324161

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.