Systems and methods for rapidly and accurately indentifying...

Optics: measuring and testing – Egg candling – Photoelectric

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C356S054000, C356S059000

Reexamination Certificate

active

06750954

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates generally to eggs and, more particularly, to methods and apparatus for processing eggs.
BACKGROUND OF THE INVENTION
Discrimination between poultry eggs on the basis of some observable quality is a well-known and long-used practice in the poultry industry. “Candling” is a common name for one such technique, a term which has its roots in the original practice of inspecting an egg using the light from a candle. As is known to those familiar with eggs, although egg shells appear opaque under most lighting conditions, they are in reality somewhat translucent, and when placed in front of direct light, the contents thereof can be observed.
An egg may be a “live” egg, meaning that it has a viable embryo.
FIG. 1A
illustrates a live poultry egg
1
at about day one of incubation.
FIG. 1B
illustrates the live egg
1
at about day eleven of incubation. The egg
1
has a somewhat narrow end in the vicinity represented at
1
a
as well as an oppositely disposed broadened end portion in the vicinity shown at
1
b
. In
FIG. 1A
, an embryo
2
is represented atop the yolk
3
. The egg
1
contains an air cell
4
adjacent the broadened end
1
b
. As illustrated in
FIG. 1B
, the wings
5
, legs
6
, and beak
7
of a baby chick have developed.
An egg may be a “clear” or “infertile” egg, meaning that it does not have an embryo. More particularly, a “clear” egg is an infertile egg that has not rotted. An egg may be an “early dead” egg, meaning that it has an embryo which died at about one to five days old. An egg may be a “mid-dead” egg, meaning that it has an embryo which died at about five to fifteen days old. An egg may be a “late-dead” egg, meaning that it has an embryo which died at about fifteen to eighteen days old.
An egg may be a “rotted” egg, meaning that the egg includes a rotted infertile yolk (for example, as a result of a crack in the egg's shell) or, alternatively, a rotted, dead embryo. While an “early dead”, “mid-dead” or “late-dead egg” may be a rotted egg, those terms as used herein refer to such eggs which have not rotted. Clear, early-dead, mid-dead, late-dead, and rotted eggs may also be categorized as “non-live” eggs because they do not include a living embryo.
Eggs which are to be hatched to live poultry are typically candled during embryonic development to identify clear, rotted, and dead eggs (collectively referred to herein as “non-live eggs”). Non-live eggs are removed from incubation to increase available incubator space. In many instances it is desirable to introduce a substance, via in ovo injection, into a live egg prior to hatch. Injections of various substances into avain eggs are employed in the commercial poultry industry to decrease post-hatch mortality rates or increase the growth of the hatched bird. Similarly, the injection of virus into live eggs is utilized to propagate virus for use in preparing vaccines. Examples of substances that have been used for, or proposed for, in ovo injection include vaccines, antibodies and vitamins. Examples of in ovo treatment substances and methods of in ovo injection are described in U.S. Pat. No. 4,458,630 to Sharma et al., the contents of which are hereby incorporated by reference as if recited in full herein.
In ovo injections of substances typically occur by piercing an egg shell to create a hole therethrough (e.g., using a punch or drill), extending an injection needle through the hole and into the interior of the egg (and in some cases into the avain embryo contained therein), and injecting one or more treatment substances through the needle. An example of an injection device is disclosed in U.S. Pat. No. 4,681,063 to Hebrank; this device positions an egg and an injection needle in a fixed relationship to each other, and is designed for the high-speed automated injection of a polarity of eggs. The selected of both the site and time of injection treatment can also impact the effectiveness of the injected substance, as well as the mortality rate of the injected eggs or treated embryos. See, for example, U.S. Pat. No. 4,458,630 to Sharma et al., U.S. Pat. No. 4,681,063 to Hebrank, and U.S. Pat. No. 5,158,038 to Sheeks et al. U.S. Pat. No. 5,158,038 to Sheeks et al., U.S. Patents cited herein are hereby incorporated by reference herein in their entireties.
In commercial poultry production, only about 60% to 90% of commercial broiler eggs hatch. Eggs that do not hatch include eggs that were not fertilized, as well as fertilized eggs that have died. Infertile eggs may comprise from about 5% up to about 50% of all eggs in a set. Due to the number of non-live eggs encountered in commercial poultry production, the increasing use of automated methods for in ovo injection, and the cost of treatment substances, an automated method for identifying live eggs and selectively injecting only live eggs, is desirable.
There are other applications where it is important to be able to distinguish between live and nonlive eggs. One of these applications is the cultivation and harvesting of human flu vaccines via live eggs (referred to as “vaccine production eggs”). Human flu vaccine production is accomplished by injecting seed virus into a chicken egg at about day eleven of embryonic development (Day-11 egg), allowing the virus to grow for about two days, euthanizing the embryo by cooling the egg, and then harvesting the amniotic fluid from the egg. Typically, eggs are candled before injection of a seed virus to remove non-live eggs. Vaccine production eggs may be candled one or more days prior to injection of a seed virus therein. It is desirable to prevent seed vaccine from being wasted in non-live eggs and to eliminate costs associated with transporting and disposing of non-live eggs.
U.S. Pat. No. 3,616,262 to Coady et al. discloses a conveying apparatus for eggs that includes a candling station and an inoculation station. At the candling station, light is projected through the eggs and assessed by a human operator, who marks any eggs considered non-live. Non-live eggs are manually removed before the eggs are conveyed to the inoculating station.
U.S. Pat. Nos. 4,955,728 and 4,914,672, both to Hebrank, describe a candling apparatus that uses infrared detectors and the infrared radiation emitted from an egg to distinguish live from infertile eggs. U.S. Pat. No. 4,671,652 to van Asselt et al. describes a candling apparatus in which a plurality of light sources and corresponding light detectors are mounted in an array, and wherein eggs are passed on a flat between the light sources and the light detectors.
Unfortunately, conventional candling techniques may have somewhat limited accuracy, especially at high candling through-put speeds. Pulsed light opacity identification systems can operate at speeds equivalent to about 300,000 eggs per hour and successfully identify clear eggs from a stream of eggs. However, some eggs identified as being live will in fact be non-live (e.g., rotted eggs, mid and late dead eggs).
Thermal-based candling systems can detect rotted eggs in egg streams of up to 50,000 eggs per hour. In the candling method and apparatus described in U.S. Pat. No. 4,914,672 to Hebrank, for example, a thermal candling system measures the temperature of each egg from the bottom. The thermal candling system determines a threshold temperature. Eggs above the threshold temperature are deemed live and eggs below the threshold temperature are deemed non-live (which includes dead and clear eggs). Unfortunately, because of egg-to-egg thermal variations, thermal-based candling systems may misidentify live and non-live eggs.
FIG. 2
illustrates exemplary light value curves for live eggs and non-live eggs as measured via a light opacity candling system. Curve
10
is an upper end of a Gaussian-like cumulative distribution of light values for live eggs, and curve
12
is a lower end of a Gaussian-like cumulative distribution of light values for non-live eggs. The shaded area
14
represents a mixture of live eggs and non-live eggs in a stream of eggs because of overlapping light

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Systems and methods for rapidly and accurately indentifying... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Systems and methods for rapidly and accurately indentifying..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Systems and methods for rapidly and accurately indentifying... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3322345

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.