Spectrum management method for a cable data system

Multiplex communications – Diagnostic testing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C370S225000, C725S107000, C455S062000

Reexamination Certificate

active

06757253

ABSTRACT:

FIELD OF INVENTION
This invention relates to telecommunications, and more specifically to a spectrum management method for use with cable modems.
BACKGROUND OF THE INVENTION
Within recent years, Cable TV companies have expanded their product offerings beyond traditional cable TV video services to include such offerings as internet data, voice, both switched circuit and IP, and active gaming services. Further, in an effort to remove the heavy cost of equipment from their balance sheets, these companies are attempting to move the market toward a retail purchase model of most in-home equipment.
As a result of this effort, cable companies allied themselves together to drive the development of the Data-Over-Cable Service Interface Specifications, DOCSIS, standards. The goal of this effort was to allow many vendors to produce equipment that would interoperate regardless of the manufacturer. Achieving this goal would greatly assist the cable companies in moving the market toward a retail model where end users purchase their own equipment. This means that modems would work in any cable infrastructure. In addition, it addressed a historical problem for cable companies in that they were no longer tied to a single source manufacturer for infrastructure equipment.
In order to provide data services to end customers, data must be able to travel in both directions: from the “internet” to the customer, commonly called the forward-path or downstream, and from the customer to the “internet”, commonly called the return-path or upstream. A substantial portion of the DOCSIS specification is dedicated to defining the protocols which are used to support providing data and Voice over IP services in both directions. However, one serious omission is present within the DOCSIS specification.
The forward-path direction of the Cable TV Plant functions as a fairly clean environment. This is entirely due to the fact that the traditional television set receiver utilizing an analog video demodulator requires a very high Carrier-to-Noise ratio, C/N, to produce a quality picture that satisfies the customer. Thus the net result regarding the forward path direction is a Carrier-to-Noise ratio which is sufficiently high enough to support both of the downstream DOCSIS digital modulation schemes, i.e. 64QAM and 256QAM.
The return-path on the other hand is a very hostile environment. The return path direction is not monitored by each household monitor for signal quality as is the case in the Forward Path direction. In essence, the only receivers available in the return path are the few Cable Modem Termination System, CMTS, digital receivers located at the CATV Head-end.
The hostility of the return path is a result of many factors. Since the CATV network today utilizes a tree and branch topology, there are numerous return path branches that are combined prior to the CMTS digital demodulator receiving the signal. Since it is a tree and branch topology design, all signals, whether they are Ingress Noise, Impulsive Noise, Continuous Wave, CW, type noise such as generated by Shortwave radio, or burst coherent signals such as generated by amateur radio and Citizens Band radio, all are combined prior to arriving at the CMTS digital receiver.
Because of the multiple path combining at the CMTS receiver and lack of customer complaints to the Cable TV operators to improve the signal path, the return path is extremely hostile to any type of communications transmission. More importantly, wideband digitally modulated signals are constrained to operate under the DOCSIS communications protocol. This means that burst transmission TDMA multiplexing is particularly vulnerable. Given the fact that there has not been a multitude of customers to serve as test sets, and given the fact that coaxial cable in any Cable TV network is optimized for the forward path direction, it should not come as too much of a surprise that the return path signal quality metrics are effectively still in their infancy.
Not only does the return path suffer from the summation or combining of return path branches, it also suffers from the fact that the return path has largely never been evaluated for known steady impairments such as micro-reflections, group delay, and system non-linearity. While some of these impairments such as micro-reflections and group delay could reasonably be controlled with proper return path alignment techniques such as a wideband sweep alignment technique, the impact due to non-linearity is generally speaking not well understood, and therefore continues to be largely ignored.
While the DOCSIS specification provides for a great deal of flexibility relative to the type of modulation scheme, symbol rates, degree of forward error correction, and frequency selection which may be used in the return-path, this protocol has failed to put the necessary provisions within the specification to allow for dynamically monitoring the return path-spectral quality in a timely fashion and adapting the return-path so as to maximize the data service provided within these hostile environments.
Thus, the hostile nature of the return-path makes spectrum management an absolute necessity, especially when considering such QOS-sensitive data services as Voice over IP. When constrained by the DOCSIS protocol, significant delays and data throughput impacts will be experienced as a result of probing the return-path spectrum. To date, no system has been developed which reduces these delays to adequate levels.
SUMMARY OF THE INVENTION
In order to monitor the spectral quality of the return path, signal-to-noise-ratio measurements must be performed which reflect both active signal noise characteristics as well as signal distortion impacts. Assessing signal distortion impact requires that a transmit burst of adequate duration and spectral quality be provided from various points within the cable plant infrastructure.
The DOCSIS specification does not support the functionality to allow modems to be forced to transmit the required signal on a frequency of interest in a timely manner. Further, the DOCSIS specification allows for a large channel retune time, in excess of 100 milliseconds, before being required to transmit on the return path. When taken together, these two factors result in a drastic impact on active data services when attempting to assess alternate spectral areas.
If an effort is made to monitor the spectral quality continually, then maximum achievable bit rates will be impacted. Similarly, if these assessments are only performed when the active communication channel degrades, then a large dropout of service will result as the system attempts to evaluate a significant area of spectrum before adapting the return-path configuration. As quality-of-service sensitive data services such as Voice-over-IP increase in deployment, the ability of the system to automatically respond to dynamic-hostile environments in a timely fashion will become even more critical.
One solution to this problem is when an active channel degrades, randomly hop to another section of the spectrum in hopes that it can support the data service, a trial-and-error approach which has serious consequences when the new spectrum is not capable of supporting the data traffic.
In order to be able to reliably hop to a so-called “clean channel” when an actual channel becomes degraded, in the subject method unused portions of the return path spectrum are continuously monitored in the background to be able to ascertain channel quality. This is accomplished through the use of a single parallel receiver which polls the cable modems at various taps. When an active channel becomes degraded, a reference table of unused upstream channels and their signal characteristics is consulted. When a suitable channel is found, the active channel is switched to this one. It will be noted that selecting the unused upstream spectrum for monitoring permits simultaneous data transmission on the active channels.
In order to monitor the unused portion of the spectrum, a polling signal is transmitted to a modem selected to transmit

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Spectrum management method for a cable data system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Spectrum management method for a cable data system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Spectrum management method for a cable data system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3322317

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.