Method and apparatus for evaluating bids for scheduling a...

Data processing: generic control systems or specific application – Specific application – apparatus or process – Product assembly or manufacturing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S121000

Reexamination Certificate

active

06801819

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention pertains to automated manufacturing environments, such as semiconductor manufacturing, and, more particularly, to a method and apparatus for evaluating bids for scheduling a resource.
2. Description of the Related Art
Growing technological requirements and the worldwide acceptance of sophisticated electronic devices have created an unprecedented demand for large-scale, complex, integrated circuits. Competition in the semiconductor industry requires that products be designed, manufactured, and marketed in the most efficient manner possible. This requires improvements in fabrication technology to keep pace with the rapid improvements in the electronics industry. Meeting these demands spawns many technological advances in materials and processing equipment and significantly increases the number of integrated circuit designs. These improvements also require effective utilization of computing resources and other highly sophisticated equipment to aid, not only design and fabrication, but also the scheduling, control, and automation of the manufacturing process.
Turning first to fabrication, integrated circuits, or microchips, are manufactured from modern semiconductor devices containing numerous structures or features, typically the size of a few micrometers. The features are placed in localized areas of a semiconducting substrate, and are either conductive, non-conductive, or semi-conductive (i.e., rendered conductive in defined areas with dopants). The fabrication process generally involves processing a number of wafers through a series of fabrication tools. Each fabrication tool performs one or more of four basic operations discussed more fully below. The four basic operations are performed in accordance with an overall process to finally produce the finished semiconductor devices.
Integrated circuits are manufactured from wafers of a semiconducting substrate material. Layers of materials are added, removed, and/or treated during fabrication to create the integrated, electrical circuits that make up the device. The fabrication essentially comprises the following four basic operations:
layering, or adding thin layers of various materials to a wafer from which a semiconductor is produced;
patterning, or removing selected portions of added layers;
doping, or placing specific amounts of dopants in selected portions of the wafer through openings in the added layers; and
heat treating, or heating and cooling the materials to produce desired effects in the processed wafer.
Although there are only four basic operations, they can be combined in hundreds of different ways, depending upon the particular fabrication process. See, e.g., Peter Van Zant,
Microchip Fabrication A Practical Guide to Semiconductor Processing
(3d Ed. 1997 McGraw-Hill Companies, Inc.) (ISBN 0-07-067250-4).
Efficient management of a facility for manufacturing products, such as semiconductor chips, requires monitoring of various aspects of the manufacturing process. For example, it is typically desirable to track the amount of raw materials on hand, the status of work-in-process and the status and availability of machines and tools at every step in the process. One of the most important decisions in controlling the manufacturing process is selecting which lot should nm on each process tool at any given time. Additionally, most machines used in the manufacturing process require scheduling of routine preventative maintenance (PM) procedures and equipment qualification (Qual) procedures, as well as other diagnostic and reconditioning procedures that must be performed on a regular basis, such that the performance of the procedures does not impede the manufacturing process itself.
One approach to this issue implements an automated “Manufacturing Execution System” (MES). An automated MES enables a user to view and manipulate, to a limited extent, the status of machines and tools, or “entities,” in a manufacturing environment. In addition, an MES enables the dispatching and tracking of lots or work-in-process through the manufacturing process to enable resources to be managed in the most efficient manner. Specifically, in response to MES prompts, a user inputs requested information regarding work-in-process and entity status. For example, when a user performs a PM on a particular entity, the operator logs the performance of the PM (an “event”) into an MES screen to update the information stored in the database with respect to the status of that entity. Alternatively, if an entity is to be taken down for repair or maintenance, the operator logs this information into the MES database, which then prevents use of the entity until it is subsequently logged back up to a production ready state.
Although MES systems are sufficient for tracking lots and machines, such systems suffer several deficiencies, the most obvious of which are their passive nature, lack of advance scheduling, and inability to support highly automated factory operations. Current MES systems largely depend on manufacturing personnel for monitoring factory state and initiating activities at the correct time. For example, a lot does not begin processing until a wafer fab technician (WFT) issues the appropriate MES command. And, prior to processing, a WFT must issue an MES command to retrieve the lot from the automated material handling system (AMHS) with sufficient advance planning that the lot is available at the process tool when the process tool becomes available. If the WFT does not retrieve the lot soon enough, or neglects to initiate processing at the earliest available time, the process tool becomes idle and production is adversely impacted.
These types of deficiencies in the typical automated MES emphasize the importance of the wafer fabrication technician (WFT) in the efficient operation of the manufacturing process. WETs perform many vital functions. For instance, WFTs initiate dispatching, transport, and processing as their attention and time permits. The make scheduling decisions such as whether to run an incomplete lot, as opposed to waiting for an approaching lots, or performing PM or qualification instead of processing lots. However, the presence of WFTs also inevitably introduces some inefficiencies. Typically, there may be a significant difference between the performance of the best WFT and the performance of the worst WFT. A WFT typically simultaneously monitors the processing of many tools, making it difficult to focus on an individual lot or tool. Furthermore, the size and complexity of the modern fabrication process flows makes it exceedingly difficult for a WFT to foresee and prevent downstream bottlenecks or shortages arising from upstream bottlenecks. Shift changes, rest breaks, and days off for the WFT also create inefficiencies or downtime that adversely impact the manufacturing process flow. Just as the importance of the WFT is magnified by the deficiencies of the automated MES, so are the inefficiencies of the WFT magnified by his importance.
Thus, factory control systems utilized in today's wafer fabs are passive and do not enable a high degree of automation. These systems are very dependent on wafer fab technicians and other factory staff to monitor the state of the factory, to instantaneously react to constant change, to make rapid logistical decisions and to initiate and coordinate factory control activity in a timely manner. These wafer fab technicians are agents, providing the active “glue” that is lacking in factory control systems. As a result, factory effectiveness in the highly competitive semiconductor industry is quite dependent on the availability, productivity, skill level and consistency of these human agents. Wafer fab technicians must monitor and operate a number of tools located in various bays in a fab. They are forced to multiplex across tools, bays, material handling systems and a variety of factory control systems. As a fab's production ramps and more complex processes are introduced, it is difficult to achieve the scalability required

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for evaluating bids for scheduling a... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for evaluating bids for scheduling a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for evaluating bids for scheduling a... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3319493

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.