Method and apparatus for improved pinning strength for...

Dynamic magnetic information storage or retrieval – Head – Magnetoresistive reproducing head

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06801412

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates in general to spin valve heads for magnetic storage systems, and more particularly to a method and apparatus for enhanced giant magnetoresistance (GMR) effects using positive magnetostrictive material embedded in a self-pinned composite layer.
2. Description of Related Art
Magnetic recording is a key and invaluable segment of the information-processing industry. While the basic principles are one hundred years old for early tape devices, and over forty years old for magnetic hard disk drives, an influx of technical innovations continues to extend the storage capacity and performance of magnetic recording products. For hard disk drives, the areal density or density of written data bits on the magnetic medium has increased by a factor of more than two million since the first disk drive was applied to data storage. Since 1991, areal density has grown by a 60% compound growth rate, which is based on corresponding improvements in heads, media, drive electronics, and mechanics.
Magnetic recording heads have been considered the most significant factor in areal-density growth. The ability of the magnetic recording heads to both write and subsequently read magnetically recorded data from the medium at data densities well into the Gigabits per Square Inch (Gbits/in
2
) range gives hard disk drives the power to remain the dominant storage device for many years to come.
Important components of computing platforms are mass storage devices including magnetic disk and magnetic tape drives, where magnetic tape drives are popular, for example, in data backup applications. The magnetic disk drive includes a rotating magnetic disk, write and read heads that are suspended by a suspension arm above the rotating magnetic disk and an actuator that swings the suspension arm to place the read and write heads over selected circular tracks on the rotating disk. The read and write heads are directly mounted on a slider that has an Air-Bearing Surface (ABS) between the slider and the rotating disk. The suspension arm biases the slider into contact with the surface of the magnetic disk when the magnetic disk is not rotating. However, when the magnetic disk rotates, air is swirled by the rotating disk adjacent to the ABS causing the slider to ride on a cushion of air just above the surface of the rotating magnetic disk. The write and read heads are employed for writing magnetic data to and reading magnetic data from the rotating disk. The read and write heads are connected to processing circuitry that operates according to a computer program to implement the writing and reading functions.
A magnetoresistive (MR) sensor detects magnetic field signals through the resistance changes of a sensing element as a function of the strength and direction of magnetic flux being sensed by the sensing element. Conventional MR sensors, such as those used as MR read heads for reading data in magnetic recording disk and tape drives, operate on the basis of the anisotropic magnetoresistive (AMR) effect of the bulk magnetic material, which is typically a perm-alloy. A component of the read element resistance varies as the square of the cosine of the angle between the magnetization direction in the read element and the direction of sense current through the read element. Recorded data can be read from a magnetic medium, such as the magnetic disk in a magnetic disk drive, because the external magnetic field from the recorded magnetic medium (the signal field) causes a change in the direction of magnetization in the read element, which in turn causes a change in resistance of the read element and a corresponding change in the sensed current or voltage.
In the past several years, prospects of increased storage capacity have been made possible by the discovery and development of sensors based on the giant magnetoresistance (GMR) effect, also known as the spin-valve effect. In the spin valve sensor, the GMR effect varies as the cosine of the angle between the magnetization of the pinned layer and the magnetization of the free layer. Recorded data can be read from a magnetic medium because the external magnetic field from the recorded magnetic medium, or signal field, causes a change in the direction of magnetization of the free layer, which in turn causes a change in the resistance of the spin valve sensor and a corresponding change in the sensed current or voltage.
Magnetic sensors utilizing the GMR effect are found in mass storage devices such as, for example, magnetic disk and tape drives and are frequently referred to as spin-valve sensors. The spin-valve sensors being divided into two main categories, the Anti-FerroMagnetically (AFM) pinned spin valve and the self-pinned spin valve. An AFM pinned spin valve comprises a sandwiched structure consisting of two ferromagnetic layers separated by a thin non-ferromagnetic layer. One of the ferromagnetic layers is called the pinned layer because it is magnetically pinned or oriented in a fixed and unchanging direction by an adjacent AFM layer, commonly referred to as the pinning layer, which pins the magnetic orientation of the pinned layer through anti-ferromagnetic exchange coupling by the application of a sense current field. The other ferromagnetic layer is called the free or sensing layer because the magnetization is allowed to rotate in response to the presence of external magnetic fields.
In the self-pinned spin valve, the magnetic moment of the pinned layer is pinned in the fabrication process, i.e.—the magnetic moment is set by the specific thickness and composition of the film. The self-pinned layer may be formed of a single layer of a single material or may be a composite layer structure of multiple materials. It is noteworthy that a self-pinned spin valve requires no additional external layers applied adjacent thereto to maintain a desired magnetic orientation and, therefore, is considered to be an improvement over the anti-ferromagnetically pinned spin valve.
In spin valve sensors that provide exchange coupling with an AFM layer, several problems exist. The exchange field strength, for example, of a Fe—Mn AFM pinning layer is highly sensitive to temperature. As the temperature increases, the Fe—Mn pinning layer is said to soften, whereby the Fe—Mn pinning layer's ability to fix the magnetization of the ferromagnetic pinned layer decreases. Thus, any Electro-Static Discharge (ESD) event, which causes an increase in temperature, may reduce the pinning capability of the Fe—Mn pinning layer.
Additionally, the use of Fe—Mn requires careful control of the fabrication process steps and the use of protective materials as Fe—Mn is highly susceptible to corrosion. Further, the use of Fe—Mn also requires that the anti-ferromagnetic material used to exchange bias the free ferromagnetic layer be made of a different material, such as Ni—Mn. To provide sufficient exchange coupling field strength, however, the Ni—Mn must be annealed, which may cause interdiffusion of other materials into the free layer causing decreased magnetoresistance and other detrimental effects.
Prior art self-pinned spin valves, seeking to eliminate the problems of the AFM exchange coupled spin valves, provide an Anti-Parallel (AP) laminate structure consisting of first and second Ferromagnetic Pinned (FP) layers separated by an Anti-Ferromagnetic Coupling (APC) layer. The magnetic orientations of the first and second FP layers are set to be in opposite directions and the thickness of the FP layers is such that the net magnetic moment of the laminated structure is near zero. In order for the intrinsic anisotropy field (H
k
) of the AP laminate structure to remain self-pinned, the magnitude of H
k
must be several times larger than the coupling field of the free layer. Depending upon the materials used for the FP and APC layers of the prior art, a preferred minimum thickness of the APC layer is desired in order to strengthen the anti-ferromagnetic coupling between the AP layers. The thickness of the APC layer may be made so thin, how

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for improved pinning strength for... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for improved pinning strength for..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for improved pinning strength for... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3318187

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.