Chemistry: natural resins or derivatives; peptides or proteins; – Proteins – i.e. – more than 100 amino acid residues
Reexamination Certificate
2001-04-03
2004-08-17
Kunz, Gary (Department: 1646)
Chemistry: natural resins or derivatives; peptides or proteins;
Proteins, i.e., more than 100 amino acid residues
C530S351000
Reexamination Certificate
active
06777539
ABSTRACT:
BACKGROUND OF THE INVENTION
Hormones and polypeptide growth factors control proliferation and differentiation of cells of multicellular organisms. These diffusable molecules allow cells to communicate with each other and act in concert to form cells and organs, and to repair damaged tissue. Examples of hormones and growth factors include the steroid hormones (e.g. estrogen, testosterone), parathyroid hormone, follicle stimulating hormone, the interleukins, platelet derived growth factor (PDGF), epidermal growth factor (EGF), granulocyte-macrophage colony stimulating factor (GM-CSF), erythropoietin (EPO) and calcitonin.
Hormones and growth factors influence cellular metabolism by binding to receptors. Receptors may be integral membrane proteins that are linked to signaling pathways within the cell, such as second messenger systems. Other classes of receptors are soluble molecules, such as the transcription factors. Of particular interest are receptors for cytokines, molecules that promote the proliferation and/or differentiation of cells. Examples of cytokines include erythropoietin (EPO), which stimulates the development of red blood cells; thrombopoietin (TPO), which stimulates development of cells of the megakaryocyte lineage; and granulocyte-colony stimulating factor (G-CSF), which stimulates development of neutrophils. These cytokines are useful in restoring normal blood cell levels in patients suffering from anemia, thrombocytopenia, and neutropenia or receiving chemotherapy for cancer.
The demonstrated in vivo activities of these cytokines illustrate the enormous clinical potential of, and need for, other cytokines, cytokine agonists, and cytokine antagonists or binding partners. The present invention addresses these needs by providing a new cytokine antagonist or binding partner, a soluble hematopoietic cytokine receptor, as well as related compositions and methods.
The present invention provides such polypeptides for these and other uses that should be apparent to those skilled in the art from the teachings herein.
DESCRIPTION OF THE INVENTION
Within one aspect, the present invention provides an isolated polynucleotide that encodes a soluble receptor polypeptide comprising a sequence of amino acid residues that is at least 90% identical to the amino acid sequence as shown in SEQ ID NO:6, and wherein the soluble receptor polypeptide encoded by the polynucleotide sequence binds a ligand comprising a polypeptide of SEQ ID NO:10 or SEQ ID NO:47, or antagonizes the ligand activity. In one embodiment, the isolated polynucleotide is as disclosed above, wherein the soluble receptor polypeptide encoded by the polynucleotide forms a homodimeric receptor complex.
Within another aspect, the present invention provides an isolated polynucleotide that encodes a soluble receptor polypeptide comprising a sequence of amino acid residues that is at least 90% identical to the amino acid sequence as shown in SEQ ID NO:6, wherein the soluble receptor polypeptide encoded by the polynucleotide forms a heterodimeric or multimeric receptor complex. In one embodiment, the isolated polynucleotide is as disclosed above, wherein the soluble receptor polypeptide encoded by the polynucleotide forms a heterodimeric or multimeric receptor complex further comprising a soluble Class I cytokine receptor.
In one embodiment, the isolated polynucleotide is as disclosed above, wherein the soluble receptor polypeptide encoded by the polynucleotide forms a heterodimeric or multimeric receptor complex further comprising a soluble IL-2R&ggr; receptor polypeptide (SEQ ID NO:4) or a soluble IL-13&agr;′ receptor polypeptide (SEQ ID NO:82). In another embodiment, the isolated polynucleotide is as disclosed above, wherein the polypeptide further comprises a WSXWS motif as shown in SEQ ID NO:13.
Within another aspect, the present invention provides an isolated polynucleotide that encodes a soluble receptor polypeptide comprising a sequence of amino acid residues as shown in SEQ ID NO:6, wherein the soluble receptor polypeptide encoded by the polynucleotide forms a heterodimeric or multimeric receptor complex. In one embodiment, the isolated polynucleotide is as disclosed above, wherein the soluble receptor polypeptide encoded by the polynucleotide further comprises a soluble Class I cytokine receptor. In another embodiment, the isolated polynucleotide is as disclosed above, wherein the soluble receptor polypeptide encoded by the polynucleotide forms a heterodimeric or multimeric receptor complex further comprising a soluble IL-2R&ggr; receptor polypeptide (SEQ ID NO:4) or a soluble IL-13&agr;′ receptor polypeptide (SEQ ID NO:82). In another embodiment, the isolated polynucleotide is as disclosed above, wherein the soluble receptor polypeptide is encoded by the polynucleotide as shown in SEQ ID NO:7. In another embodiment, the isolated polynucleotide is as disclosed above, wherein the soluble receptor polypeptide further comprises an affinity tag.
Within a second aspect, the present invention provides an expression vector comprising the following operably linked elements: (a) a transcription promoter; a first DNA segment encoding a soluble receptor polypeptide having an amino acid sequence as shown in SEQ ID NO:6; and a transcription terminator; and (b) a second transcription promoter; a second DNA segment encoding a soluble Class I cytokine receptor polypeptide; and a transcription terminator; and wherein the first and second DNA segments are contained within a single expression vector or are contained within independent expression vectors. In one embodiment, the expression vector disclosed above further comprises a secretory signal sequence operably linked to the first and second DNA segments. In another embodiment, the expression vector is as disclosed above, wherein the second DNA segment encodes a soluble IL-2R&ggr; receptor polypeptide (SEQ ID NO:4) or a soluble IL-13&agr;′ receptor polypeptide (SEQ ID NO:82).
Within a third aspect, the present invention provides a cultured cell comprising an expression vector as disclosed above, wherein the cell expresses the polypeptides encoded by the DNA segments. In one embodiment, the cultured cell comprising an expression vector is as disclosed above, wherein the first and second DNA segments are located on independent expression vectors and are co-transfected into the cell, and cell expresses the polypeptides encoded by the DNA segments. In another embodiment, the cultured cell comprising an expression vector is as disclosed above, wherein the cell expresses a heterodimeric or multimeric soluble receptor polypeptide encoded by the DNA segments. In another embodiment, the cultured cell comprising an expression vector is as disclosed above, wherein the cell secretes a soluble receptor polypeptide heterodimer or multimeric complex. In another embodiment, the cultured cell comprising an expression vector is as disclosed above, wherein the cell secretes a soluble receptor polypeptide heterodimer or multimeric complex that binds a ligand comprising a polypeptide of SEQ ID NO:10 or SEQ ID NO:47, or antagonizes the ligand activity.
Within another aspect, the present invention provides a DNA construct encoding a fusion protein comprising: a first DNA segment encoding a polypeptide having a sequence of amino acid residues as shown in SEQ ID NO:6; and at least one other DNA segment encoding a soluble Class I cytokine receptor polypeptide, wherein the first and other DNA segments are connected in-frame; and wherein the first and other DNA segments encode the fusion protein. In one embodiment, the DNA construct encodes a fusion protein as disclosed above, wherein at least one other DNA segment encodes a soluble IL-2R&ggr; receptor polypeptide (SEQ ID NO:4) or a soluble IL-13&agr;′ receptor polypeptide (SEQ ID NO:82).
Within another aspect, the present invention provides an expression vector comprising the following operably linked elements: a transcription promoter; a DNA construct encoding a fusion protein as disclosed above; and a transcription terminator, wh
Holly Richard D.
Nelson Andrew J.
Novak Julia E.
Presnell Scott R.
Sprecher Cindy A.
Johnson Jennifer K.
Kunz Gary
Li Ruixiang
ZymoGenetics Inc.
LandOfFree
Soluble zalpha11 cytokine receptors does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Soluble zalpha11 cytokine receptors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Soluble zalpha11 cytokine receptors will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3317301