Apparatus for cable routing management

Electricity: conductors and insulators – Boxes and housings

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C174S060000, C174S064000, C174S058000, C220S004020, C439S535000

Reexamination Certificate

active

06809258

ABSTRACT:

TECHNICAL FIELD
Embodiments of the present invention relate to the field of cable routing. Specifically, embodiments of the present invention relate to an apparatus for managing the routing of cables.
BACKGROUND OF THE INVENTION
Electrical and/or optical signals, data, and power flow through and between various equipment. A signal transmitted by transmitting equipment is directed to receiving equipment, for instance. The signal is conducted from the transmitter to the receiver via transmissive media. Such transmissive media include optically or electrically conductive cables. Within an individual piece of equipment, a signal may be routed between various modules, also via cables.
The routing of signals and data between and within equipment is an important aspect of many operations. Modern networking, telecommunications, data processing, instrumentation, and related endeavors are heavily dependent upon the transmission of data via optical media, such as fiber optics cable. These optical media typically originate, terminate, and/or flow between modules, assemblies, drawers, cabinets, and similar equipment mounted in platforms of various types.
The use of multiplicities of cables are not atypical in such applications. Management of the physical routing of fiber optic cables entering and leaving an installation and the routing of fiber optic cables between modules and components therein is an important engineering consideration. Cable routing management thus impacts the assembly, alteration, maintenance, and other aspects related to networking, telecommunications, data processing, and related equipment and installations.
In installations with multiplicities of cables entering, leaving, and routed internally between modules and/or components therein, cable routing management can pose a formidable challenge. For example, one modern networking tower style installation design has numerous entering and egressing fiber optic cables and features a number of modules and line cards which are interconnected by over
256
fiber optic cables.
Many of the fiber optic cables in the exemplary tower design are terminated on interface line cards, mounted primarily in the backplane of the tower. Fiber optic cables optically interconnect various of the linecards, as well as optical transponder and multiplexer/demultiplexer (Mux/Demux) modules. Conventionally, the cables are routed so that the interconnections can be made, not on the backplane, but in the front of the tower for accessibility.
Given the number of fiber optic cables being thus routed, and the different permutations characterizing possible interconnections, the lengths and routing paths of the various fiber optic cables can differ, some significantly. Even during initial installation, the differences in cable length and routing paths pose a challenge for cable routing management that can result in neatness problems. This can be exacerbated, sometimes significantly, during cable re-routing associated with alteration and maintenance.
Sound engineering practice dictates routing the cables in a way that exemplifies good workmanship; neatness counts for several reasons. Routing the cables in such a way that their array is not neat can cause confusion to installation, alteration, and maintenance technicians. Confusion can be costly, because it requires time and effort from such technicians on activities such as cable tracing, that could probably be spent more profitably. Confusion can also result in erroneous terminations being made.
Incorrect terminations can also be costly for several reasons. Erroneously terminated cables can result in mis-routed signals, data, etc. This can cause improper operation or failure of the equipment. Incorrect termination is also costly because it must be corrected, requiring troubleshooting, cable tracing, and other activities, further requiring time and effort from technicians that could probably be spent more profitably.
Routing the cables in such a way that their array is not neat can also cause bundling, “rat's nests”, stretched cables and connectors, and other conditions. These conditions can be problematic for several reasons. Such conditions can cause damage. Excessive bundling can result in damaging squeezing of cables, such as between structural members of the installation. Stretched cables and terminations can result in changing optical or electrical characteristics of the cables, separation from connectors, and determinating of the connector from terminals.
Excessive bundling and rat's nests can also restrict access to some of the cables, as well as to modules and other internal components. Restricted access can lead to additional efforts required during alterations, maintenance, and even later stages of assembly, as excessively large cable bundles and rat's nests must be negotiated to re-route extant cables and/or add new ones. Such efforts can result from increased confusion, as described above. The cost of such added required efforts can be significant.
Further, restricted access due to excessively bundled cables, rat's nests, and other problems can result in placing a limitation on the flexibility and expandability of the installation. The difficulty of adding cables to and routing cables through bundles already excessive and/or rat's nests deters, delays, and discourages alteration and addition. Alterations and additions made under these circumstances can be costly because of the additional efforts they require.
Thus, the differences in cable length and routing paths, and other aspects typical of conventional cable routing and management can cause problems related to neatness and workmanship. Confusion arising from these differences can cause termination errors which can lead to operational problems and failures. Such confusion, problems and failures can be costly. Efforts made to correct the errors can also be expensive.
Cable routing configurations that can arise under these circumstances can cause damage, which can be costly. Such configurations can restrict access, requiring additional efforts during installation, alteration, and maintenance, which also raise costs. Further, cable routing configurations that can arise using conventional cable routing and management can pose obstacles deterring aspects of further installation and alteration. Such obstacles can limit flexibility and expandability.
SUMMARY OF THE INVENTION
An apparatus for managing the routing of a cable intercoupling two components in an installation is disclosed. The apparatus has a drawer for storing a portion of the cable and a drawer for cross-connecting the cable, which is connected to one component, with another cable, which is connected to the other component. The apparatus can be used with optical and electrical cables.


REFERENCES:
patent: 5286919 (1994-02-01), Benson et al.
patent: 5998732 (1999-12-01), Caveney et al.
patent: 6498293 (2002-12-01), Marchand et al.
patent: 6534709 (2003-03-01), English
patent: 6631237 (2003-10-01), Knudsen et al.
patent: 6674000 (2004-01-01), Lambiaso

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Apparatus for cable routing management does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Apparatus for cable routing management, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Apparatus for cable routing management will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3316637

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.