Diagnostic apparatus for an evaporated fuel system, and...

Internal-combustion engines – Charge forming device – Having fuel vapor recovery and storage system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C073S118040, C180S065230

Reexamination Certificate

active

06769419

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of The Invention
The present invention relates to a diagnostic apparatus for an evaporated fuel system, and relates to a vehicle control apparatus for an automotive vehicle equipped with the diagnostic apparatus. In the evaporated fuel system, fuel vapor, which is evaporated from fuel within a fuel tank, is adsorbed in a canister, and the adsorbed fuel vapor is purged from the canister into an intake passage of an internal combustion engine via a purge passage by using a negative pressure in the intake passage of the engine.
2. Description of the Related Art
As disclosed in Japanese Laid-Open Patent Application No.9-303214, an evaporated fuel system that is designed to prevent the fuel vapor of a fuel tank from escaping into the atmosphere is known. In the evaporated fuel system, the fuel vapor, which is evaporated from fuel within the fuel tank, is adsorbed in a canister, and the adsorbed fuel vapor is purged, at a proper time, from the canister into an intake passage of an internal combustion engine via a purge passage by using a negative pressure in the intake passage of the engine.
If a leakage-type malfunction, such as pipe disconnection, pipe cracking or fuel tank cracking, occurs in the evaporated fuel system, the fuel vapor will leak from the location of the malfunction. In order to suitably achieve the above-described operation of the evaporated fuel system, it is necessary to safely detect whether the leakage-type malfunction occurs in the evaporated fuel system.
A conceivable diagnostic method for detecting a leakage-type malfunction in the evaporated fuel system is as follows. (1) A negative pressure in the intake passage of the engine is introduced into the evaporated fuel system so as to reduce the pressure in the evaporated fuel system. (2) After the pressure in the evaporated fuel system reaches a reference pressure, the evaporated fuel system is isolated by closing the purge passage. (3) A change in the pressure in the evaporated fuel system after the system is isolated is monitored and the determination as to whether a leakage-type malfunction occurs in the evaporated fuel system is performed based on the monitored pressure change.
When the result of the monitoring is that the pressure of the isolated evaporated fuel system is rapidly increased to the atmospheric pressure, it is determined that a leakage-type malfunction does occur in the evaporated fuel system. On the other hand, when the result of the monitoring is that the change in the pressure of the isolated evaporated fuel system is negligible, it is determined that no leakage-type malfunction occurs in the evaporated fuel system. Hence, by using the above diagnostic method, it is possible to determine whether the leakage-type malfunction occurs in the evaporated fuel system.
However, when the negative pressure in the intake passage of the engine is not sufficiently large to reduce the pressure in the evaporated fuel system, the internal pressure of the evaporated fuel system is not smoothly reduced. In such a case, the internal pressure of the evaporated fuel system may not reach the reference pressure, or much time is needed for the pressure in the evaporated fuel system to reach the reference pressure. During the period for which the negative pressure in the intake passage of the engine is being introduced into the evaporated fuel system, the adsorbed fuel vapor cannot be properly purged from the canister into the intake passage via the purge passage. Therefore, when the above diagnostic method is executed under the condition in which the negative pressure in the intake passage is not sufficiently large, the evaporated fuel system is placed in the non-purging condition for a considerably long time. This will result in the deterioration of the evaporative emission of the engine.
To eliminate the above problem, in the evaporated fuel system disclosed in Japanese Laid-Open Patent Application No.9-303214, when the negative pressure in the intake passage of the engine is not sufficient large to reduce the internal pressure of the evaporated fuel system, or when the elapsed time needed for the pressure in the evaporated fuel system to reach the reference pressure is longer than a predetermined time, the execution of the above diagnostic method is inhibited or terminated. However, the execution of the diagnostic method according to the above-mentioned document is always inhibited or terminated when the negative pressure in the intake passage is not sufficiently large.
Further, there is no teaching in the above-mentioned document of positively maintaining the negative pressure of the intake passage that is sufficiently large in magnitude to reduce the internal pressure of the evaporated fuel system, when introducing the negative pressure of the intake passage into the evaporated fuel system to reduce the system pressure. If the negative pressure of the intake passage that is sufficient large in magnitude can be maintained when introducing the negative pressure of the intake passage into the evaporated fuel system, it is possible to avoid the undesired condition in which the evaporated fuel system is placed in the non-purging condition for a considerably long time, without inhibiting or terminating the execution of the diagnostic method.
SUMMARY OF THE INVENTION
In order to overcome the above-described problems, preferred embodiments of the present invention provide an improved evaporated fuel system diagnostic apparatus which is capable of maintaining the negative pressure of the intake passage that is sufficiently large in magnitude to reduce the internal pressure of the evaporated fuel system to a reference pressure, when introducing the negative pressure of the intake passage into the evaporated fuel system.
Another object of the present invention is to provide a vehicle control apparatus for an automotive vehicle equipped with the evaporated fuel system diagnostic apparatus which maintains the negative pressure in the intake passage that is sufficiently large in magnitude to reduce the internal pressure of the evaporated fuel system to a reference pressure, when introducing the negative pressure of the intake passage into the evaporated fuel system.
According to one preferred embodiment of the present invention, an evaporated fuel system diagnostic apparatus includes: a malfunction determination unit which determines whether a malfunction in the evaporated fuel system occurs, by introducing a negative pressure of an intake passage of an internal combustion engine into a fuel tank; and an operating condition setting unit which sets, when the malfunction determination unit has started the introduction of the negative pressure of the intake passage into the fuel tank, an operating condition of the engine in a predetermined condition that causes the negative pressure of the intake passage to be within a predetermined pressure range.
In the evaporated fuel system diagnostic apparatus of the above preferred embodiment, the operating condition of the engine is set, when introducing, the negative pressure of the intake passage into the evaporated fuel system, in the predetermined condition that causes the negative pressure of the intake passage to be within the predetermined pressure range. As the engine operating condition is set in the predetermined condition, the setting of the throttle valve at a large opening angle is avoided, regardless of whether a heavy load on the engine is demanded by the vehicle operator.
According to one preferred embodiment of the present invention, a diagnostic apparatus for an evaporated fuel system in which fuel vapor, evaporated from fuel within a fuel tank, is adsorbed, and the adsorbed fuel vapor is purged into an intake passage of an internal combustion engine via a purge passage by using a negative pressure of the intake passage, includes: a malfunction determination unit which determines whether a malfunction in the evaporated fuel system occurs, based on an internal pressure in the evaporated fuel system after the evaporated fuel syst

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Diagnostic apparatus for an evaporated fuel system, and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Diagnostic apparatus for an evaporated fuel system, and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Diagnostic apparatus for an evaporated fuel system, and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3316524

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.