System and method for image tamper detection via thumbnail...

Image analysis – Applications

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06831990

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to the field of digital image tamper detection. More particularly, the invention deals with a system and method of digital image tamper detection that can effectively detect image manipulations and their locations within the image but is tolerant of the effects of low-level image compression and additive channel noise, i.e., a semi-fragile technique.
2. Description of Related Art
Image tamper detection techniques are well known in the art as a method used to detect modification of an image from its original state.
A range of tamper detection techniques has been described, varying in degree from fragile techniques, that can detect the most minute alterations of an image, to more robust techniques, that are tolerant of significant modifications of an image. Semi-fragile techniques lie between these extremes and are capable of detecting significant modifications while, at the same time, tolerating minor alterations, such as those induced by low levels of lossy compression or channel noise.
Approaches to semi-fragile tamper detection have been proposed in the literature, all of which employ some variation of an extracted image signature. The concept of semi-fragile tamper detection is described by M. Schneider and S. Chang, Proceedings of the IEEE International Conference on Image Processing, pages 227-230, Lausanne, Switzerland, September 1996. Schneider and Chang proposed a semi-fragile technique of tamper detection that extracts a content-based signature of the image as intensity histograms from blocks of image pixels. This content-based signature is then embedded within the original image using any one of a variety of known watermarking techniques. This technique is robust to a certain level of lossy image compression.
Another scheme for semi-fragile tamper detection is described by L. Xie and G. Arce in “A Watermark for Digital Images,” Proceedings of the IEEE International Conference on Image Processing, Chicago, Ill., October 1998. Xie and Arce describe a scheme of embedding edge information extracted from the original image within the low-order coefficients of a wavelet transform.
S. Bhattacharjee and M. Kutter, in “Compression Tolerant Image Authentication,” Proceedings of the IEEE International Conference on Image Processing, Chicago, Ill., October 1998, describe another compression tolerant tamper-detection scheme. Their scheme extracts perceptually interesting feature points that are not embedded within the image but maintained separately.
In M. Wu and B. Liu, “Watermarking for Image Authentication,” Proceedings of the IEEE International Conference on Image Processing, Chicago, Ill., October 1998, a technique is presented that invisibly embeds within the original image a visually meaningful watermark, along with a set of simple features, by altering coefficients that are indexed into a look-up table of frequency domain coefficients.
In addition to approaches that are described in the literature, several patents teach devices and methods for image tamper detection and/or authentication. An image tamper detection and/or authentication process is disclosed by Ward, in U.S. Pat. No. 5,760,386, in which the image of the holder of an identification document is stored, in highly compressed form, in a magnetic medium dispersed invisibly within a visible print of the holder that is part of the document or within the body of the identification document itself. When the document is scanned magnetically at the place where identification is being authenticated, this image is decompressed and displayed in order to confirm that the holder of the document is the person shown and that the document has not been tampered with. The entire content of the original image is used in Ward's process. This tamper detection approach is not restricted to certain acquisition devices.
Shimizu, et al., U.S. Pat. No. 6,005,936, disclose a digital camera device and method for embedding an extracted image signature in a digital image. In response to the digital signal of the image, a digital camera having a region-dividing unit divides the digital image into first and second regions. Authentication information is generated in the form of a hash value from data in the first region and this information is then encrypted using a secret key, which differs for each camera and is held within the camera itself. The encrypted hash value is then embedded in the second image region, and the first and second regions are then combined to form a combined image. An alteration detecting system is also disclosed in which an authenticator uses a public key corresponding to the camera's secret key to decrypt the hash value. The original division of the image is detected and the hash value is calculated anew and compared with the decrypted hash value to accomplish authentication of the image. This approach uses only part of the original image for authentication, i.e., the first image region, and is restricted to a particular image acquisition device, i.e., specially equipped digital cameras.
Friedman, U.S. Pat. No. 5,499,294, discloses a digital camera equipped with a processor for generating a digital signature by hashing an image file using a predetermined algorithm and encrypting the hashed file with a private key stored in the camera's processor. The encrypted image may be decrypted using a public key that is stored in the camera's housing. Both the image file and the digital signature are stored individually (not embedded one within the other) but in such a way that they will be available together. For authentication purposes only, the public key is used to decrypt the digital signature for comparison with a newly created hash of the entire image. This tamper detection approach is restricted to certain acquisition devices, i.e., specially equipped digital cameras. It is also possible for the digital signature and the original image file to be separated from one another by a malicious attacker intent on defeating this security technique.
Schipper, et al., U.S. Pat. No. 5,987,136, disclose an apparatus for producing a self-authenticating visual image of a selected view, using a digital image forming means such as a digital camera, together with a position determining system that provides position information. The position information is incorporated in the digital image by altering pixel bit values in a selected authentication pattern of the pixel array associated with the digital image. A set of polygons is used as the authentication pattern, wherein each polygon contains at least one pixel from the selected subset of the pixel array. The authentication pattern is represented by a key or ordered sequence of keys and may be encrypted and either stored with or as a part of the digital image. This tamper detection approach is restricted to certain acquisition devices, i.e., specially equipped digital cameras. If the authentication pattern is stored separately from the image, there is the possibility of its destruction by a malicious attacker.
Squilla, et al., U.S. Pat. No. 5,898,779, disclose a public key encryption system for authenticating an image using a digital camera which has a private key embedded in it that is unique to the digital camera. A known public key, uniquely based on the private key, is used to decrypt digital image data encrypted with the private key in order to establish authenticity of an image. A digital signature is produced by the camera using one or more patterns taken from an active area of the image and input to a predetermined hash function. The hashed output is then encrypted employing the embedded private key. The digital signature and location of the active area are stored together with the image but not within the image. This tamper detection approach is restricted to certain acquisition devices, i.e., specially equipped digital cameras, and is subject to destruction of both the digital signature and the location of the active area by a malicious attacker.
Murphy, et al., U.S. Pat. No.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

System and method for image tamper detection via thumbnail... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with System and method for image tamper detection via thumbnail..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and System and method for image tamper detection via thumbnail... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3314509

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.