Ink recording element utilizing wrinkled particles

Stock material or miscellaneous articles – Ink jet stock for printing – Particles present in ink receptive layer

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Other Related Categories

C428S032210, C428S032250, C428S032270, C428S032280, C428S032370

Type

Reexamination Certificate

Status

active

Patent number

06753051

Description

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to ink recording elements utilizing wrinkled particles
BACKGROUND OF THE INVENTION
In a typical inkjet recording or printing system, ink droplets are ejected from a nozzle at high speed towards a recording element or medium to produce an image on the medium. The ink droplets, or recording liquid, generally comprise a recording agent, such as a dye or pigment, and a large amount of solvent. The solvent, or carrier liquid, typically is made up of water, an organic material such as a monohydric alcohol, a polyhydric alcohol or mixtures thereof.
An inkjet recording element typically comprises a support having on at least one surface thereof an ink-receiving or image-forming layer and includes those intended for reflection viewing, which have an opaque support, and those intended for viewing by transmitted light, which have a transparent support.
An inkjet recording element that simultaneously provides an almost instantaneous ink dry time and good image quality is desirable. However, given the wide range of ink compositions and ink volumes that a recording element needs to accommodate, these requirements of inkjet recording media are difficult to achieve simultaneously.
Inkjet recording elements are known that employ porous or non-porous single layer or multilayer coatings that act as suitable ink receiving layers on one or both sides of a porous or non-porous support. Recording elements that use non-porous coatings typically have good image quality and stability but exhibit poor ink dry time. Recording elements that use porous coatings typically contain colloidal particulates and have poorer image stability but exhibit superior dry times.
While a wide variety of different types of porous image recording elements for use with inkjet printing are known, there are many unsolved problems in the art and many deficiencies in the known products which have severely limited their commercial usefulness. A major challenge in the design of a porous image-recording layer is to be able to obtain good quality, crack-free coatings. Inkjet prints, prepared by printing onto inkjet recording elements, are subject to environmental degradation. They are especially vulnerable to light fade and fade resulting from gaseous impurities in the air, such as ozone and nitrogen oxides. Highly swellable hydrophilic layers can take an undesirably long time to dry, slowing printing speed. Porous layers speed the absorption of the ink vehicle, but often suffer from insufficient gloss and severe dye fade. Porous layers are also difficult to coat without cracking.
Irregularly shaped microparticles are known in the art, but they are badly suited for specific imaging applications due to either their size or composition or their inherent difficulty in preparation. WO 92/1655 and WO 93/19099 report crosslinked, wrinkled particles comprised of ethylenically unsaturated carboxylic acid-containing monomers. These particles, however, are large in size (>75 micrometers) and thus are unsuitable for use in thin coatings. In addition, the monomeric composition is chemically aggressive and will hasten the fade of guest dyes and colorants, thus making these particles unsuitable for certain imaging applications. Finally, the liquid uptake of these materials is extremely large. The particles increase dramatically in size upon absorbing liquids. Thus, coatings comprised of such superabsorbants will lose wet cohesion due to the large dimensional changes of the particles upon absorption of liquids. Bowl-shaped, crosslinked vinyl microparticles are reported in U.S. Pat. No. 5,559,202. The chemical composition of these particles, however, does not afford stability advantages to adsorbed dyes and colorants, thus making these particles unsuitable for use in inkjet receiver media. Wrinkled and irregularly shaped particles comprising methacrylate monomers are disclosed in Journal of Polymer Science Part A: Polymer Chemistry, Vol. 38 p. 4038-4056 (2000). Similarly, the chemical composition of these particles does not afford stability advantages to adsorbed dyes and colorants, thus making these particles unsuitable for use in inkjet receiver media.
There is a need to provide an inkjet recording element, which will provide improved ink uptake speed. In addition, theme remains a need to provide an inkjet recording element having a receiving layer that when printed upon has an excellent image quality and stability.
SUMMARY OF THE INVENTION
The present invention comprises an ink recording element comprising a support having thereon at least one ink receiving layer, the layer comprising wrinkled particles. In another embodiment, the present invention comprises an ink recording element comprising a support having thereon at least one ink receiving layer, the layer comprising wrinkled polyester-containing particles. The present invention also includes a method of forming a print comprising providing an ink recording element comprising at least one ink receiving layer capable of accepting an ink image, the layer comprising wrinkled particles and printing on the ink recording element utilizing a printer.
Using the invention, a recording element is obtained which will provide improved ink uptake speed, and when printed upon, has an excellent image quality and stability.
DETAILED DESCRIPTION OF THE INVENTION
The wrinkled particles of the present invention may be comprised of any polymeric material. The wrinkled particles will have a surface with at least one wrinkle. For purposes of the present invention, a wrinkle may comprise folds, ridges, crevices, channels or combinations thereof. The mean distance between the crests of the folds, ridges, crevices or channels may vary from 0.02 to 2 micrometers. Preferably, the mean distance may be between 0.04 and 0.4 micrometers. These “wrinkled” particles are distinct from “porous” particles in that the folds, ridges, crevices, channels or combinations thereof are present on the surface of the particle and do not form continuous pathways through the particle's interior. These particles may have any shape, including spherical or bowl-shapes. In the case that the particle has only one wrinkle, then the particle can be said to be “bowl-shaped.” Typical wrinkled particles well known to those skilled in the art are discussed and illustrated in U.S. Pat. No. 5,559,202, W/O 92/16565, W/O 93/19099, and Ser. No. 10/208,344 by Leon et al., (Docket 83814) filed of even date herewith entitled “Wrinkled Polyester Particles”.
The wrinkled particles of this invention are preferably readily dispersible in water, in water-miscible organic solvents, and in combinations thereof. They may be stored as dispersions or the solvents can be removed to yield a dry material, which can be readily redispersed. The wrinkled particles may be stabilized by surfactants, colloidal inbrganics, protective colloids, or combinations thereof, which may be reversibly adsorbed, affixed or chemically bound to the surface. Alternately, the particles may be stabilized by functionalities, which are covalently bound within the monomeric and polymeric components, which are reacted to form the particles.
The wrinkled polymeric particles of the present invention may be made by any method known to those skilled in the art. Most known wrinkled particles are synthesized via a suspension polymerization process involving one or more unifunctional and one or more multifunctional monomers in the presence of an inert liquid which is present in the same phase as the monomers and which solvates, swells or plasticizes the polymerization phase. The suspension polymerization may be of the conventional oil-in-water or inverse water-in-oil type. The polymerization mechanism may be an addition polymerization or a polycondensation. The inert liquid may be water or a water-miscible solvent, in an inverse suspension system, or any of the water-immiscible organic solvents listed below, in a conventional suspension system. In certain cases, the monomeric mixture itself may serve as a swelling agent for the polymeric pro

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Ink recording element utilizing wrinkled particles does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Ink recording element utilizing wrinkled particles, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Ink recording element utilizing wrinkled particles will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3311842

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.