Human growth factors

Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving antigen-antibody binding – specific binding protein...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C435S007100, C435S007230, C530S387100, C530S387900, C530S388100, C530S389100, C530S350000, C530S399000

Reexamination Certificate

active

06818412

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to novel human growth factors. More specifically, isolated nucleic acid molecules are provided encoding huXAG-1, huXAG-2, and huXAG-3. HuXAG-1, huXAG-2, and huXAG-3 polypeptides are also provided, as are vectors, host cells and recombinant methods for producing the same. The invention further relates to screening methods for identifying agonists and antagonists of huXAG-1, huXAG-2, and huXAG-3 activity, as well as diagnostic and therapeutic uses of huXAG-1, huXAG-2 and huXAG-3.
2. Related Art
Growth Factors
Control of cell division is a basic aspect of multicellular existence that depends upon a programmed series of events. One factor in cellular proliferation and its control that has been identified is the presence of various polypeptide growth factors. Growth factors are essential components of growth media for in vitro cell culture and are involved in cell survival in vivo. Some of the growth factors that have been identified to date include PDGF (platelet-derived growth factor) implicated in the repair of the vascular system in vivo; EGF (epidermal growth factor) which acts as a mitogen for cells of ectodermal and mesodermal origin; TGF-&agr; (transforming growth factor) which acts as a mitogen similarly to EGF but can make normal cells grow in agar, TGF-&bgr; (transforming growth factor) which is a mitogen for some cells and a growth inhibitor for others; and NGF (nerve growth factor) involved in the development and maintenance of sympathetic and embryonic neurons. Watson et al., Molecular Biology of the Gene, p. 975 (Benjamin/Cummings 1987).
It is clear that particular cell types require particular growth factors. Peptide growth factors are produced and secreted from a variety of tissues. The target cells are typically located close to the site of release of the growth factor (paracrine response). In addition to their growth promoting and differentiation-inducing activities, growth factors elicit a wide variety of effects in their target cells and are involved in processes such as inflammation, immune reactions and wound repair. See, Pimentel, E.
Handbook of Growth Factors, Volume
1:
General Basics
(CRC Press 1994).
Monitoring of growth factor gene expression in cells of various human tissue, would be useful in detecting and studying abnormal hypertrophy both in vitro and in vivo. In addition, monitoring for higher than normal expression of tissue-specific growth factors would be useful in early diagnosis of certain cancers.
Additionally, polypeptide growth factors are very important cell culture reagents for stimulating cellular growth and aiding survival of the cells in vitro.
The search continues to exist for polypeptides that stimulate and/or inhibit growth of particular cells for both in vitro and in vivo uses. In addition, the search continues for novel tissue specific markers that can be employed qualitatively to help identify a particular cell or tissue type and employed qualitatively to assess whether cells, tissues or organs are abnormal in their expression of a particular polypeptide.
At the front of the larvae in most frog species lies a small and sticky patch of cells, called the cement gland. The cement gland lies anterior to the brain and any other neural tissue and develops from the embryonic ectoderm (Drysdale et al.,
Dev. Growth Differ.
34:51-59 (1992)). Formation of the cement gland is influenced by multiple signals (Sive et al.,
Dev. Dyn.
205:265-280 (1996)). One such signal is the XAG protein, which is expressed at very high levels in the cement gland and at lower levels in the more posterior hatching gland. It encodes a secreted protein later expressed in the pharynx (Jamrich et al.,
Development
105:779-786 (1989)) and in the lung primordium.
Colorectal Carcinoma
Colorectal carcinoma is a cancer which affects many people per year. The prognosis is poor in about 50% of the cases because the tumor is often not detected until the disease has spread and has reached a terminal stage. Early diagnosis is important to increase chances of arresting the carcinoma before it metastasizes, thereby leading to an improved prognosis.
One method of early tumor diagnosis is detection of the presence of a marker or antigen specific for a particular tumor. These normally proteinaceous markers are synthesized by the tumor, and may be found in the serum and/or on the surface of the tumor. Only a limited number of tumor markers for colorectal carcinoma have thus far been found to have clinical use. These include carcinoembryonic antigen (CEA), and the sialyated Lewis a antigen (CA 19.9). Unfortunately, approximately 40% of patients whose condition has been accurately diagnosed as colorectal carcinoma do not have elevated plasma levels of either of these antigens when initially examined. There is a need for commercially available serodiagnostic markers which can be used to detect the tumor and to monitor therapy for this group.
Another method of diagnosis involves detecting the presence of a gene associated with a particular disease or condition. A need exists for genetic markers which can be detected by genetic screening tests for the early detection of colon cancer in high risk patients.
Accordingly, it is an object of this invention to provide a new marker for the detection of colorectal carcinoma.
It is another object of the invention to provide a new marker suitable for diagnosing and monitoring colorectal cancer. Such novel marker can be further used to make novel antibodies or other antagonists that bind the colon cancer specific polypeptides to diagnose cancer and to bind and inhibit the biological function of the polypeptide.
A further object of the present invention is to provide a method and kit for the detection and monitoring of colorectal carcinoma in patients using assay methods specific for markers associated with colorectal carcinoma cells.
SUMMARY OF THE INVENTION
The present invention provides isolated nucleic acid molecules comprising a polynucleotide encoding the huXAG-1 (also referred to as colon cancer-specific gene (CCSG)) polypeptide having the amino acid sequence shown in SEQ ID NO:2 or the amino acid sequence encoded by the cDNA clone deposited as ATCC Deposit Number 97641 on Jun. 27, 1996. The nucleotide sequence was determined by sequencing the deposited huXAG-1 clone and is shown in SEQ ID NO:1. The sequence contains an open reading frame encoding a polypeptide of about 175 amino acid residues, with a leader sequence of about 20 amino acid residues, and a predicted molecular weight of about 20 kDa. The amino acid sequence of mature huXAG-1 is shown in SEQ ID NO:2 (amino acid residues from about 1 to about 155 in SEQ ID NO:2).
Thus, one aspect of the invention provides an isolated nucleic acid molecule comprising a polynucleotide having a nucleotide sequence selected from the group consisting of: (a) a nucleotide sequence encoding the huXAG-1 polypeptide having the complete amino acid sequence in SEQ ID NO:2; (b) a nucleotide sequence encoding the huXAG-1 polypeptide having the complete amino acid sequence in SEQ ID NO:2 but minus the N-terminal methionine residue; (c) a nucleotide sequence encoding the mature huXAG-1 having the amino acid sequence at positions from about 1 to about 155 in SEQ ID NO:2; (d) a nucleotide sequence encoding the huXAG-1 polypeptide having the complete amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 97641; (e) a nucleotide sequence encoding the mature huXAG-1 polypeptide having the amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. 97641; and (f) a nucleotide sequence complementary to any of the nucleotide sequences in (a), (b), (c), (d), or (e) above.
The present invention also provides isolated nucleic acid molecules comprising a polynucleotide encoding the huXAG-2 polypeptide having the amino acid sequence shown in SEQ ID NO:4 or the amino acid sequence encoded by the cDNA deposited as ATCC Deposit Number 209134 on Jun. 27, 1997. The nucleotide sequence determined by s

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Human growth factors does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Human growth factors, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Human growth factors will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3306101

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.