Method and apparatus for testing thin material

Measuring and testing – Vibration – Resonance – frequency – or amplitude study

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C073S599000, C073S627000, C073S159000

Reexamination Certificate

active

06745628

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to a method for testing thin material, for example paper, foils or other sheet material, wherein the material is irradiated with ultrasonic waves at least in certain areas and transmission of the ultrasonic waves through the material is determined and evaluated. In addition, the invention relates to a corresponding test device.
Such methods and test devices are used to determine the weight per unit area or thickness of the material in noncontacting fashion by ultrasonic transmission, whereby the ultrasonic transmission is generally in inverse proportion to the local weight per unit area. An example of such a method is described in DE 30 48 710 C2. A typical field of application is the testing of bank notes in automatic tellers or bank note sorters. The bank notes are guided between ultrasonic transmitters and ultrasonic receivers so that the bank note is tested at least along a given track.
Ultrasonic transmission measurements can be used to discover not only the thickness or weight per unit area of the material but also tears or holes in the material. This is described for example in U.S. Pat. No. 4,519,249, where a roller system is used to curve the bank notes during ultrasonic irradiation far enough for the tears or holes to open sufficiently. The ultrasonic waves then pass through the tear or hole unhindered. In perfect bank notes the transmission value is only about 1%, while at holes or tears in the bank notes the transmission is 100%. Such places therefore yield clear peaks in the measuring pattern.
In the course of investigations done by the applicant in connection with the present invention, it has proved disadvantageous in these known methods that they are e.g. unable to recognize porous areas in the material that consist of pores invisible to the naked eye and that this may falsify the determination of the weight per unit area. This problem occurs in particular with specimens such as bank notes that have been in circulation for some time. In this case, frequent bending of the material may have produced porous areas at certain places in the course of time. These porous places show an increased transmission value compared to the transmission value of the undamaged material. According to the applicant's investigations, the problem of recognizing such places in a test consists in that an increased transmission value is not necessarily due to porosity in the case of a struc-structured material such as a bank note. A bank note may thus have e.g. intentionally thinner places or places of different density at certain places, for example in the area of a watermark or another security feature, or microperforations as a further security feature. An increased transmission value can therefore also be due to desired structures or features in a perfect bank note. If a transmission value of about 1% is assumed for a perfect bank note for example, a porous place would have a transmission value of 3 to 4% for example. However, a perfect bank note could likewise have a transmission value of 3 to 4% at a certain, intentionally thinner place, said value not being distinguishable from the transmission value of a porous place.
SUMMARY OF THE INVENTION
It is the problem of the present invention to provide an alternative that makes it possible to detect defective, in particular porous, places very clearly in a simple way during testing and to distinguish them from intentionally thinner places in the material for example.
This problem is solved by a method and a test device according to the independent claims. The dependent claims relate to especially advantageous embodiments and developments of the inventive method and test device.
The inventive solution is likewise based on transmission measurement of ultrasonic waves. The essential point is that the transmission of ultrasonic waves is determined at different ultrasonic frequencies. Measurement is done at least at two different frequencies. The differences of the transmission at the different frequencies are used to determine a certain criterion, such as the difference of the transmission values or a quotient of the transmission values, for evaluating the quality of the material under test.
This idea is based on the finding that, for normal, undamaged paper, the transmission is in inverse proportion not only to the weight per unit area but also to the frequency. In a defective, porous area the deviation from this law is the greater the higher the ultrasonic frequency is, due to the frequency dependence of the diffraction on the pores. This means that the positive deviation of the measured transmission in the area of a porous place from the transmission value of undamaged material is higher for example for short-wave ultrasonic waves than for long-wave ultrasonic waves. The differences in the intensity meas-measured in transmission at the different frequencies can consequently be used to obtain information in a simple way about the presence of places of increased porosity.
A corresponding test device includes not only an ultrasonic transmitting device for irradiating the material under test from one side at least in certain areas and an ultrasonic receiving device for measuring the intensity of the ultrasonic waves transmitted through the material on the other side of the material, but also a suitable evaluation device for evaluating the determined transmission of the ultrasonic waves. The ultrasonic transmitting device and/or the ultrasonic receiving device are designed such that the transmission of ultrasonic waves can be determined at different frequencies. The evaluation device must accordingly be able to determine a criterion for evaluating the quality of the irradiated material by the differences of the transmission at the different frequencies.
In one embodiment, the material is irradiated with ultrasonic waves at exactly adjusted discrete, i.e. single, different frequencies, for example exactly two different frequencies. The term “discrete frequencies” is to be understood here to include narrow-band frequency ranges around the particular desired frequency.
Irradiation at discrete different frequencies is to be realized for example by having the ultrasonic transmitting device include different transmitters each emitting ultrasonic waves of a certain frequency or narrow-band frequency range. However, the ultrasonic transmitting device used can also emit ultrasonic waves of an exactly defined spectrum, for example at two discrete different frequencies simultaneously.
If the transmitting device emits at exactly defined, discrete frequencies, the ultrasonic receiving device may be constructed so as to detect only frequencies in these ranges, i.e. it can for example likewise consist of individual receivers each measuring selectively only one frequency. However, the receiving device may also be one that detects ultrasonic waves of a great variety of frequencies in a broad band and thus records a broad transmission spectrum. In this case, however, it must be ensured that the ultrasonic waves of the different frequencies can be separated from each other. This may be done for example by means of software when a frequency spectrum is recorded by the receiving device in that device in that only the measured values at the certain frequencies are taken into account during evaluation.
Another way of guaranteeing separation of the different frequencies is not to emit at the different frequencies simultaneously but one after the other, it being taken into account during measurement or evaluation at what time ultrasound was emitted at what frequency.
In an alternative embodiment, the ultrasonic transmitting device irradiates the material with ultrasonic waves with a continuous broad frequency spectrum. This is followed for example by selective measurement on the receiver side, i.e. either only certain frequencies are registered by the receiver or only the measured values at certain frequencies are taken into account in a following step.
One way of emitting ultrasonic waves with a broad frequenc

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method and apparatus for testing thin material does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method and apparatus for testing thin material, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method and apparatus for testing thin material will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3305410

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.