Energy distribution network

Data processing: generic control systems or specific application – Specific application – apparatus or process – Chemical process control or monitoring system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S266000, C205S343000, C205S637000

Reexamination Certificate

active

06745105

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to an energy network for providing hydrogen generated at a production site, particularly by one or more water electrolysers, for use particularly, as a fuel for vehicles or energy storage. The invention further relates to the use of hydrogen as a fuel for a fuel cell wherein hydrogen is converted into electrical energy, for combustion as an auxiliary energy source and for the generation of electricity, particularly, as part of an electrical distribution system.
BACKGROUND TO THE INVENTION
In planning the production capacity of a large chemical plant, for example, for methanol production or a large electricity production site, correct knowledge of expected demand of the product is critical with regard to the optimization of capital deployment and certainty of a return on investment in the large facility. Most often millions of dollars are required to finance the construction. Thus, measuring and predicting the supply and demand for the end product is highly desirable. Applying techniques to predict future demand on a real time, short, medium or long term basis, commercially, is extremely important, particularly for maximizing asset utilization, reducing inventory, and minimizing risk.
Currently, the widespread deployment of a network of hydrogen supply systems for hydrogen-fueled vehicles does not exist. At present, there is a widespread network of hydrocarbon-fueled vehicles complete with an optimized fuel supply infrastructure network based on the limits of known technology, society's standards and consumer acceptance. Many believe to put a widespread, geographic network of hydrogen vehicles with a network of hydrogen supply encompassing production, storage, transportation and delivery would involve such a large investment and be so challenging, that the task is believed essentially impossible to do in any economic method. Although, there are numerous examples of hydrogen production from electricity close to where it can be used to fuel a vehicle, such individual sites are not interconnected so as to optimize performance and asset deployment.
There are a number of shortcomings of the current hydrocarbon-fueled vehicle distribution networks, which shortcomings include a finite resource of the hydrocarbon fuel per se and an uneven distribution of the world's resources. In fact, much of the world's hydrocarbon resources are focused in just a few geographical areas, such that many nations do not have a substantive supply of indigenous fuel. This has led to global and regional conflict. In addition, there is uncertainty about the impact of greenhouse gas emissions on health and climate change. Furthermore, the very use of hydrocarbon fuels, or the processing for use of hydrocarbon fuels, leads to ground level pollution of smog and ozone as well as regional environmental challenges, such as acid rain. Airborne pollutants, either directly or indirectly formed due to the combustion or processing of hydrocarbon fuels, lead to reduced crop output, potentially reduced lifespan and other health issues for all living beings.
A network of fuel supply systems which could provide as good, if not better, consumer service and reduce or eliminate fuel resource disparity, negative environmental aspects of hydrocarbon fuels and their combustion or processing which can be introduced in a manner which mitigates the investment risk, optimizes the capacity factor of all equipment in the system and encourages the use of non-carbon energy sources is highly desirable. Hydrogen fuel, produced from energy sources which are lower in carbon content than conventional coal and oil, or hydrogen fuel produced from coal and oil in which the carbon is sequestered below the surface of the earth, would be an ideal fuel for this network.
One aspect of the delivery of a product from a production site to a utilization site involves the use of storage. Storage of the product, sometimes a commodity, can efficiently allow for supply and demand to meet in a manner which optimizes the utilization of production. Two examples of this is the supply of hydrogen produced
(a) from methanol on board a vehicle and used in a car, where on board it is reformed into a hydrogen containing gas; and
(b) by electricity off-board a vehicle and used to fill a compressed gas storage tank either on the vehicle or on the ground for subsequent transfer to the vehicle.
In latter case (b), the hydrogen is produced off-board the vehicle and is stored in a compressed gas tank, or similar container. The accumulation of hydrogen disconnects the production of electricity for hydrogen production with the real-time demand for hydrogen. This load shifting effect on electricity production, enabled by storage of hydrogen, enables better and more predictable utilization of electricity—particularly when the hydrogen demand is of some significant percentage, say 1% to 100% with regard to the electricity being produced. This enables decisions to be made on a real time basis as to where to direct the electricity, for example, to hydrogen production by electrolysis or other uses. This is only part of the equation as it enables measurement of the supply of electricity, i.e. at times where incremental production of electricity is available or advantageous and includes many aspects of operating an electrical generator, transmission, and distribution system which creates improved asset utilization for hydrogen production in addition to meeting immediate real time electrical demand. The second half of the equation is the measurement of hydrogen demand in essentially real time. This involves planning for the production of hydrogen. When the hydrogen production is from electrolysis sources and the hydrogen is transferred to the storage tank on board the vehicle from a storage tank or directly from an electrolyser base to meet the need demanded by the market place for hydrogen, measurement on a moment by moment basis is possible of the hydrogen demand. The demand can be understood by those familiar in the art by techniques such as temperature/pressure measurements as well as electrical energy consumption. In addition, measurement of the amount of hydrogen energy on board the vehicle can enable information to be provided to the controller for hydrogen supply from electricity production and can be equated to stored energy/electrical resources. These measurements complete the equation for supply and demand with detailed measurement. This enables the following:
(a) real time predictions of the amount of electricity required in the following time periods: instantaneous and, when combined with previous data, the rate of growth of demand for electricity for hydrogen production;
(b) the deferred use of electricity for hydrogen production and the supply of electricity to a demand of a higher priority (economic or technical);
(c) the safe curtailment of electricity supply for the use of hydrogen production as sufficient storage exists in the ‘system network’ of storage tanks; and
(d) the ability to develop ‘virtual’ storage reservoirs where by priority/cost/manner of supply of electricity can be determined based on the status of the storage reservoir.
A system which connects electricity production decision making to stored hydrogen, either on board a vehicle or on the ground to hydrogen markets enables better decision making with regard to when, where, and how much electricity to provide. This information, available on essentially an instantaneous basis through measurement, is critical to asset deployment and increase asset utilization and risk mitigation. It can also be used to better schedule electrical generators. By acting as an “interruptible load” it can provide operating reserves for the electrical utility to meet reliability requirements. By collecting this information through appropriate means a novel and inventive measurement system is created which incorporate the features incorporating one or more of a,b,c and d above.
It can, thus, be seen that the decisions concerning a chemical plant for, say, methanol

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Energy distribution network does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Energy distribution network, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Energy distribution network will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3305363

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.