Nuclear decommissioning insurance financial product and method

Data processing: financial – business practice – management – or co – Automated electrical financial or business practice or... – Insurance

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06772128

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a financial product and method for providing financial assurance for decommissioning a nuclear power plant using insurance. More specifically, the present invention relates to a financial product, such as a decommissioning insurance policy, and method for receiving premiums from a trust, investing the received premiums, and paying actual decommissioning expenses back to the trust in accordance with the decommissioning insurance policy. Further, the present invention relates to a financial product and method for determining the premium of the financial product.
BACKGROUND OF THE INVENTION
Nuclear Power Facilities and Licenses
The Nuclear Regulatory Commission (“NRC”) sets requirements for the safe operation of commercial nuclear power reactors, licenses the construction and operation of the reactors, and inspects them to assure they are operating safely within the agency's regulations. According to the NRC, there are 103 operating nuclear power reactors at 65 sites. These plants use nuclear energy to generate electricity and generate approximately 22% of electricity in the United States. From the 103 operating plants, there are approximately 48 licensees, 4 reactor vendors, and 80 different nuclear power plant designs.
Commercial nuclear power plants are licensed by the NRC for a 40-year operating period with possible renewal of the license for an extended period of operation of up to 20 additional years. The last new license granted by the NRC was issued in 1978 and there are currently no new licensing requests. Further, the NRC is not expecting any new applications in the near future. However, in 1998 two plants, Calvert Cliffs and Oconee, have applied for and received a 20-year license renewal. Further, the NRC and other regulatory authorities may encourage the extension of nuclear power plants in order to meet air emission standards.
Unless license extensions are granted, all current licenses will expire by 2035, including Calvert Cliffs and Oconee whose extensions will expire in 2018. In particular, licenses for twelve plants will expire by 2011, and licenses for thirty-six plants will expire between 2011 and 2015. It should also be noted that the NRC may issue an order to a licensee to suspend or permanently cease operations if the licensee fails to operate the facility in accordance with the terms of the license.
Nuclear Value Chain—Nuclear Plants Considered as a Business
Due to low and steady variable costs, nuclear power plants provide long-term stability of total costs. This allows nuclear power plants to offer forward sales that capture a market premium which can be much more valuable than the margin from low current production costs.
In particular, when the electricity industry is considered as a business, the economic value of nuclear power plants can be defined in stages. The Nuclear Energy Institute (“NEI”) refers to this analysis of economic value as the “nuclear value chain.” The nuclear value chain includes:
Low production cost: The going forward cost of electricity from a nuclear power plant is clearly competitive when compared to the market clearing price of electricity in the day-ahead market. However, nuclear units have significantly more value than simply the price they receive for electricity in the wholesale market.
Improved performance: The industry can continue to achieve improved performance through increased rates, shorter refueling outages, higher fuel burn-ups, and better management of O&M costs.
Future price stability: Nuclear facilities can leverage its high degree of future price stability by selling at a premium to large users an assured source of electricity supply at a known price. For example, presently some users in California are willing to pay this premium to protect themselves against the damaging effects of price volatility in the day-ahead market.
Site value: Nuclear power plants have significant additional site value, such as switchyards, access to the power grid, ingress and egress, and spare cooling capacity. In many cases, nuclear power sites were planned for more units than were built, providing room to build additional non-nuclear generation. Such diverse generation would enable a single site to execute forward sales in the bilateral contract market and participate in the day-ahead market, in particular selling highly profitable 10-minute spinning reserve capacity.
Clean air compliance value: The substantial emissions avoided by the use of nuclear energy reduce the compliance obligation and associated costs for affected fossil-fueled power plants, including capital outlays to bring fossil-fueled plants into compliance.
Accordingly, based on the many advantages of nuclear power plants shown in the above nuclear value chain, the number of new nuclear power plants built, as well as the sale of existing plants, may increase.
Decommissioning
When nuclear facilities are shut down permanently, they enter a decommission process which will lead to the release of the site for unrestricted uses. Specifically, decommissioning a nuclear power plant can be defined as the cessation of operations and the withdrawal of the facility from service, followed by its transformation into an out-of-service state and eventually, its complete removal. Decommissioning activities are intended to place the nuclear facility in a condition that provides for the health and safety of the general public and the environment, while at the same time protecting the health and safety of the decommissioning workers.
Decommission begins when operations at a nuclear power plant are terminated. In most cases, the nuclear fuel, the mobile radioactive materials in the process systems, and the radioactive waste produced during normal operations are removed as soon as the plant ceases to operate. Certain equipment can also be removed and discarded. If the entire facility were to be dismantled immediately, however, the decommissioning workers would be exposed to higher levels of radiation than if the dismantlement were to be accomplished in several steps. Therefore, decommissioning activities have been divided into three stages. Each of these stages can be defined by two characteristics: the physical state of the plant and its equipment, and the surveillance needed to maintain that physical state.
Stage 1 decommissioning entails removing the spent fuel from the reactor, draining the liquid systems, disconnecting the operating systems, blocking and sealing the mechanical openings such as valves and plugs, and controlling the atmosphere inside the containment building. The facility is kept under surveillance, access is limited and routine inspections are carried out to assure that the plant remains in a safe condition.
Stage 2 decommissioning requires all equipment and buildings which can be easily dismantled to be removed or decontaminated and made available for other uses, leaving only the reactor core structure and its extensive shielding. The containment building and the ventilation system may be modified or removed if they are no longer needed for safety reasons, or they may be decontaminated to allow access for other purposes. Other buildings and equipment which are not radioactive may be converted for new purposes as well. Surveillance during Stage 2 is reduced, but it is desirable to continue periodic spot checks of the buildings as well as surveillance of the surrounding environment.
Stage 3 decommissioning requires that, unless the site, buildings or equipment are to be re-used for other nuclear purposes, all materials with radioactivity levels exceeding those closely equivalent to the natural radiation environment will be removed and the site released without restrictions or further surveillance.
These three stages may be carried out by rapidly progressing from one stage to the next or carried out over a prolonged period lasting as long as 100 years or more. Although most facilities intend to complete all three stages, a facility could remain at Stage 1 or Stage 2 for a relatively long period of time, or de

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nuclear decommissioning insurance financial product and method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nuclear decommissioning insurance financial product and method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nuclear decommissioning insurance financial product and method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3303878

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.