Method of driving a plasma display apparatus

Computer graphics processing and selective visual display system – Plural physical display element control system – Display elements arranged in matrix

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C345S067000, C345S204000, C315S169100, C315S169200, C315S169400

Reexamination Certificate

active

06809708

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a plasma display (PDP) apparatus and a driving method thereof. More particularly, the present invention relates to a PDP apparatus employing the ALIS (Alternate Lighting of Surfaces) method in which display lines are formed on both sides of each sustain discharge electrode and an interlaced display is attained, and a driving method thereof.
In Japanese Patent No. 2801893, a PDP apparatus employing the ALIS method, that can realize a display of high resolution at a low cost, has been disclosed.
FIG. 1
is a block diagram that shows the rough structure of the PDP apparatus employing the ALIS method disclosed in the document. As shown schematically, the PDP apparatus employing the ALIS method comprises a panel
1
in which first electrodes (X electrodes) X-
1
, X-
2
, . . . and second electrodes (Y electrodes) Y-
1
, Y-
2
, . . . , that constitute the sustain discharge electrodes, and address electrodes A-
1
, A-
2
, . . . , a control circuit
11
, an address driver
13
, a scan driver
12
, an odd-numbered Y sustain discharge circuit
16
, an even-numbered Y sustain discharge circuit
17
, an odd-numbered sustain discharge circuit
14
, an even-numbered X sustain discharge circuit
15
, and a power supply circuit
18
are provided. Since it is disclosed in Japanese Patent No. 2001893, detailed description of the structure and operation of each element is omitted here.
The ALIS method is characterized by the interlaced display in which a first display line is formed between each Y electrode and the X electrode that is adjacent upward thereto, a second display line is formed between each Y electrode and the X electrode that is adjacent downward thereto, the first display line is displayed by odd-numbered fields, and the second display line is displayed by even-numbered fields and also characterized in that the number of display lines can be doubled with the same numbers of the X electrodes and the Y electrodes due to this characteristic and a much finer resolution can be attained.
For a PDP apparatus, various techniques have been proposed to improve the display quality and reliability, to reduce power consumption, to reduce in cost, and so on. The present invention relates to the reset operation and, as for this technique, for example, in Japanese Unexamined Patent Publication (Kokai) No. 2000-75835, the technique to improve the contrast by utilizing the reset pulse that has a voltage waveform of a gradual slope in the panel employing the ALIS method has been disclosed. Also in Japanese Unexamined Patent Publication (Kokai) No. 2000-501199, the reset method that utilizes a ramp wave has been disclosed. Furthermore, in Japanese Unexamined Patent Publication (Kokai) No. 2000-242224, the technique, in which the reset pulse accompanied by lighting of all the display cells is applied only to the first subfield to improve the contrast, has been disclosed. Still furthermore, in Japanese Unexamined Patent Publication (Kokai) No. 2000-29431, the technique, in which operations can be made stable by changing the reset voltage according to the ratio of light emission pixels in the subfield, has been disclosed, and in Japanese Unexamined Patent Publication (Kokai) No. 2000-172224, the technique, in which malfunctions can be suppressed by setting the voltage of the reset pulse according to the number of times of the sustain discharges in the immediately previous subfield, has been disclosed.
Recently, the display performance of the PDP apparatus has considerably improved and a performance almost the same as that of the CRT can be obtained with respect to luminance, resolution, contrast, and so on. As the broadcasting and the video software develop, however, further improvement is expected on the part of the display apparatus, and the dark room contrast is also required to improve further. The luminance of the black display, which causes the darkroom contrast to degrade, is the result of the light emission of the reset discharge needed to stabilize discharge, therefore, it has been necessary to cause a reset discharge to occur sufficiently in order to perform addressing of many display lines at a high speed, and the discharge has been needed to have a luminance of a certain level. As described above, stable operations and the dark room contrast are in the relationship of trade-off. According to the above-mentioned Japanese Unexamined Patent Publication (Kokai) No. 2000-242224, the background light emission (black luminance) is considerably reduced and the darkroom contrast improved by applying the reset pulse accompanied by lighting of all of the display cells once in one field, that is, only in one subfield, and by carrying out the erase discharge only in the display cells that were lit in the previous subfield, for the other subfields.
On the other hand, in the PDP apparatus employing the ALIS method disclosed in Japanese Patent No. 2801893, a dark room contrast of about 500:1 can be obtained by utilizing the reset pulse of the slope-shaped waveform disclosed in Japanese Unexamined Patent Publication (Kokai) No. 2000-75835. In this method, however, the reset discharge for all of the display cells is carried out in every subfield and, therefore, the luminance becomes about ten times as high as that of the background light emission when the technique disclosed in Japanese Unexamined Patent Publication (Kokai) No. 2000-242224 is applied. In a panel or a high-resolution panel that employs a method such as the ALIS method in which every gap between every pair of adjacent electrodes is used as a display line, the coupling between two adjacent display cells vertically apart is strong and it may easily happen that charges diffuse from a lit cell to an unlit cell. As a result, the condition of a display cell is altered even though the address discharge or the sustain discharge is not carried out after resetting. It has been necessary, therefore, to carry out the reset discharge for all of the display cells, including unlit cells, in order to be able to stably perform the address discharge in the next subfield.
FIG.
2
A through
FIG. 2D
show the diffusion of charges to the adjacent display cells due to the sustain discharge in a panel employing the ALIS method. In the structure of the panel employing the ALIS method, sustain electrodes (X electrode, Y electrode) are equally spaced, and discharge is possible in any gap between all pairs of adjacent electrodes. In the figures, the action when a lit cell is formed between the X
2
electrode and the Y
2
electrode in an odd-numbered field is illustrated.
FIG. 2A
shows the sustain discharge period in the initial stage. The charged particles such as electrons or positive ions generated by discharge move within the discharge space by the force of electric field. In a panel or a high-resolution panel employing the ALIS method, the electrode of the adjacent cell exists in the vicinity of the lit cell and a strong force of electric field is applied thereto, therefore, charges are apt to move and accumulate thereon. In this case, the charges that diffuse to the adjacent cells are, in most cases, electrons that have a high mobility.
FIG. 2B
shows the sustain discharge period in the latter stage of a subfield in which sustain discharge is repeatedly caused to occur, that is, the number of sustain discharge pulses is large (the sustain discharge period is long). When the process moves to the next subfield, if resetting (erasing) is performed only for lit cells as disclosed in Japanese Unexamined Patent Publication (Kokai) 2000-242224, charges in an unlit cell contiguous to a lit cell remain intact. In such a state, if the address period is entered and a scan pulse is applied to the Y
1
electrode as shown in
FIG. 2C
, the voltage −170V of the scan pulse is overlapped by the voltage due to the negative charges accumulated on the Y
1
electrode. Therefore, an address pulse is not applied to an unlit cell and a discharge is caused to occur between the X electrode and the Y electrode in a display

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Method of driving a plasma display apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Method of driving a plasma display apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Method of driving a plasma display apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3302750

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.