Inflatable airbag bolster panel retention apparatus

Land vehicles – Wheeled – Attachment

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C280S728300, C280S730100

Reexamination Certificate

active

06688643

ABSTRACT:

BACKGROUND OF THE INVENTION
1. The Field of the Invention
The present invention relates to airbag inflation systems in motor vehicles. More specifically, the invention relates to a panel retainer for securing a bolster panel to an airbag.
2. Technical Background
Inflatable airbags are well accepted for use in motor vehicles and have been credited with preventing numerous deaths and accidents. Some statistics estimate that frontal airbags reduce the fatalities in head-on collisions by 25% among drivers using seat belts and by more than 30% among unbelted drivers. Statistics further suggest that with a combination of seat belt and airbag, serious chest injuries in frontal collisions can be reduced by 65% and serious head injuries by up to 75%. Airbag use presents clear benefits and vehicle owners are frequently willing to pay the added expense for airbags.
A modern airbag apparatus may include an electronic control unit (ECU) and one or more airbag modules. The ECU is usually installed in the middle of an automobile, between the passenger and engine compartment. If the vehicle has a driver airbag only, the ECU may be mounted in the steering wheel. The ECU includes a sensor which continuously monitors the acceleration and deceleration of the vehicle and sends this information to a processor which processes an algorithm to determine if the vehicle is in an accident situation.
When the processor determines that there is an accident situation, the ECU transmits an electrical current to an initiator in the airbag module. The initiator triggers operation of the inflator or gas generator which, in some embodiments, uses a combination of compressed gas and solid fuel. The inflator inflates a textile airbag to impact a passenger and prevent injury to the passenger. In some airbag apparatuses, the airbag may be fully inflated within 50 thousandths of a second and deflated within two tenths of a second.
An airbag cover, also called a trim cover panel, covers a compartment containing the airbag module and may reside on a steering wheel, dashboard, vehicle door, vehicle wall, or beneath the dash board. The airbag cover is typically made of a rigid plastic and may be forced opened by the pressure from the deploying airbag. In deploying the airbag, it is preferable to retain the airbag cover to prevent the airbag cover from flying loose in the passenger compartment. If the airbag cover freely moves into the passenger compartment, it may injure a passenger.
Airbag apparatuses have been primarily designed for deployment in front of the torso of an occupant between the upper torso of an occupant and the windshield or instrument panel. Conventional airbags, such as driver's or passenger airbags (hereinafter referenced as the “primary airbag”), protect the occupant's upper torso and head from colliding with a windshield or instrument panel. During a front end collision, if the occupant is restrained by a seat belt, the occupant's upper torso bends at the waist and hits the primary airbag. However, depending on the design of the vehicle seat and force of the collision, there is a tendency for an occupant to slide forward along the seat and slip below the primary airbag, falling to the feet and leg compartment of the vehicle. The tendency is pronounced when the occupant is not properly restrained by a seat belt. Sliding of the occupant below the primary airbag is referred to as “submarining”. When the occupant submarines, the primary airbag is less effective in protecting the occupant. Submarining is but one example of instances where extra support is needed to protect occupants or goods in an accident situation.
Submarining is more prevalent in vehicles which have large leg room compartments. Vehicles which have restricted leg room, such as sports cars, have a lower submarining tendency. In vehicles like sports cars, the distance between the legs and knees of the occupant and the instrument panel is shorter than the distance in vehicles like sport utility vehicles or trucks. In an accident in a sports car, the knees of the occupant often strike the instrument panel. The instrument panel prevents submarining. Generally, the material of the sports car instrument panel deforms to some degree to help protect the legs and knees of the occupant.
In order to prevent submarining in vehicles with large leg room compartments, a knee airbag system has been developed. The goal of the knee airbag system is, during an accident, to position a piece of rigid material similar to the material of the instrument panel in a sports car close to the occupant's knees and legs creating leg and knee support, which prevents submarining. The knee airbag system allows a vehicle manufacturer to design vehicles with more leg room and still have safety comparable to that of vehicles with less leg room. To accomplish the goal, the knee airbag system is typically positioned in the lower portion of the instrument panel.
The knee airbag system includes an inflator, a housing, an airbag, and a trim cover panel. The housing is a conventional enclosure for securing the knee airbag components to the vehicle. The housing stores the knee airbag system components while the airbag is deflated and not needed. The inflator, once triggered, uses compressed gas, solid fuel, or their combination to produce rapidly expanding gas to inflate the airbag. As with conventional airbag systems, an airbag is a large textile bag which the gas inflates like a balloon. The knee airbag system may also include a fixed panel, called a load distribution panel or knee bolster panel. This bolster panel is important in providing sufficient support such that submarining is prevented.
In a system using a knee bolster airbag, a primary airbag provides a cushioning effect which protects the occupant's face and head. In such a system, the knee airbag serves to restrain the legs and knees. However, without additional rigid support, the cushioning effect of the knee airbag allows the knees and legs to move a sufficient distance that submarining may still occur.
When an inflated knee airbag without rigid support contacts the legs, the flexible material of the airbag wraps around each leg. The surface area of the inflated knee airbag supporting the legs is reduced to the area where each leg contacts the knee airbag. If the force of the forward moving legs is distributed across the entire surface of the airbag, however, then the entire volume of gas in the airbag will compress resulting in more support of the legs. For this reason, a rigid support surface or “load distribution panel” is generally used in connection with a knee airbag. When such a load distribution panel is used the compressed volume of gas within the airbag creates a greatly increased opposing force pushing against the forward moving legs.
The load distribution panel is generally made of foam and hard plastic surrounding a metal substrate. The shape of the inflated airbag determines how to secure the load distribution panel. Since, the inflated knee airbag occupies a generally rectangular volume of the vehicle leg compartment, the load distribution panel is preferably rectangular. Optimal distribution of the impact force, through the volume of the inflated knee airbag, is accomplished preferably by securing each comer of the rectangular load distribution panel to the knee airbag.
Generally, the load distribution panel is secured to the front of the airbag to distribute the force of impact through the majority of the volume of gas in the inflated airbag. Securement of a load distribution panel and an airbag is a challenge because of the strong impact forces involved, the flexibility of the airbag, and the rigidity of the load distribution panel. Apparatus for securing the knee bolster panel to the knee airbag exist. For example, a load distribution panel may have threaded studs which pass through holes in the knee airbag. The studs then pass through holes in a retaining plate. The studs are secured to the retaining plate by nuts screwed onto the studs.
Another securement technique use

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Inflatable airbag bolster panel retention apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Inflatable airbag bolster panel retention apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Inflatable airbag bolster panel retention apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3297510

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.