Services control point selection in an advanced intelligent...

Multiplex communications – Pathfinding or routing – Combined circuit switching and packet switching

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C379S221080

Reexamination Certificate

active

06831914

ABSTRACT:

TECHNICAL FIELD
The present invention relates to an advanced intelligent telephone network utilizing a peripheral platform to connect to multiple Service Control Points to perform various functions related to providing subscribers an array of telephone services.
Acronyms
The written description uses a large number of acronyms to refer to various services and system components. Although generally known, use of several of these acronyms is not strictly standardized in the art. For purposes of this discussion, acronyms therefore will be defined as follows:
Advanced Intelligent Network (AIN)
Central Office (CO)
Common Channel Inter-office Signaling (CCIS)
Common Language Location Identifier (CLLI)
Call Processing Record (CPR)
Data and Reporting System (DRS)
Integrated Service Control Point (ISCP)
Integrated Services Digital Network (ISDN)
Intelligent Peripheral (IP)
Local Area Network (LAN)
Multi-Services Application Platform (MSAP)
Service Control Point (SCP)
Service Creation Environment (SCE)
Service Logic Program (SLP)
Service Management System (SMS)
Service Node (SN)
Service Switching Point (SSP)
Signaling Transfer Point (STP)
Simplified Message Desk Interface (SMDI)
Transaction Capabilities Applications Part (TCAP)
Transmission Control Protocol/Internet Protocol
(TCP/IP)
BACKGROUND ART
While the advanced intelligent network (AIN) concept continues to evolve, it has now matured to the point where AIN networks are widely used. AIN networks provide network operators with considerable flexibility and economy in structuring their product offerings and providing their customers with numerous telephone conveniences and services. As a result, telephony services have become markedly sophisticated.
With AIN, many of the “intelligent” call processing functions can be off loaded from the generic switches to peripheral or adjunct computer systems (e.g., service control point), thereby reducing the switches' processing burdens. The service control points (SCPs) assist the switches with the routing of calls and by providing data to implement customized calling features. The SCP is essentially a central control for the intelligent network. Because of the criticality of the SCP's role, the SCP sites can be implemented in mated pairs in which two identical SCPs are “paired.” Each SCP in the pair stores a duplicate copy of the subscribers' call processing data, for the customers serviced through the particular pair of SCPs. In effect, if one SCP site fails, the mate continues to provide the same service to the subscribers.
In an AIN network, the SCPs rely on peripheral platforms to provide auxiliary call processing capabilities when instructed to do so. In general terms, a peripheral platform supports the execution of service logic programs or application processes. Specifically, peripheral platforms handle key functions such as announcements and digit collection. The use of peripheral platforms negates the need for switched based announcements, which have a number of serious drawbacks. One drawback involves incurring enormous expense in having to upgrade all telephone switching offices when more announcement capacity is required. Another disadvantage is the need to rely on a single switch vendor for such upgrades. Also, any service specific announcements must be loaded onto each switch providing the particular AIN service. Loading new announcements on large numbers of switching systems is time consuming and may require the services of expert personnel provided only by the switch equipment vendor.
The use of peripheral platforms are thus desirable because these drawbacks are eliminated. They provide readily adaptable means to add and change announcements to an AIN, without direct addition of equipment in each central office switching system. The platforms also serve to centralize announcement capabilities to some extent, so that announcement reprogramming does not always require reprogramming of equipment for every single switch through which an enhanced service is offered. Also, such platforms are easier to upgrade to add call processing capabilities, such as speech recognition and speaker identification.
In a typical network incorporating a peripheral platform, a signaling communication system for two-way communications of data messages interconnects a number of central office switching systems and connects the central office switching systems to the services control point. A separate signaling communication system provides two-way data signaling communications between the peripheral platform and multiple service control points. That is, the later signaling communication system is separate from the first signaling communication system, the central office switching systems, and the trunk circuits interconnecting the central office switching systems. The second signaling communication system also permits exchange of messages between the peripheral platforms, if more than one are present.
An AIN network may also include a plurality of peripheral platforms—or in more advanced networks, intelligent peripherals (IPs). One peripheral platform may connect to one switching system or to a number of the switching systems. Each such peripheral platform provides one or more auxiliary call processing capabilities in response to instructions from the SCP.
The typical AIN architecture allows the switched transport network to interact with database systems such as SCPs and peripheral platform such as IPs for obtaining information, data and support operations. This occurs when the switching network is triggered to access the database or peripheral by some condition that arises during processing of a telephone call.
IPs and similar platforms have become integral components in the AIN architecture in the delivery of advanced features and services. U.S. Pat. No. 5,572,583 to Wheeler discloses an IP offering one or more auxiliary call processing features in response to instructions from the SCP. The IP provides such enhanced call processing functions as announcement and digit collection, voice recognition, facsimile mail, and voice mail. U.S. Pat. No. 5,469,500 to Satter et al. discloses a processor for use in a telephone network, both as an IP controlled by a SCP and as a service node (SN) operating autonomously. The call processor includes a service creation environment (SCE) and stores call processing instructions in service logic tables for use by the service logic executive to handle and route calls.
Current AIN configurations assign one IP to a SCP. The SCPs control the intelligent peripherals in a master-slave relationship. The SCPs delegate various call processing tasks to their assigned IPs. Because of this one-to-one mapping of SCP to IP, the complexity with respect to operations and management of the AIN network significantly increases as more SCPs are added. In essence, the AIN network does not scale well under this scenario. Other inefficiencies result as well. A typical IP implementation involves the use of several minicomputers, networking and internetworking equipment which are expensive. Also, underutilized IPs are expensive from a maintenance and support perspective.
Futhermore, there is no readily viable method to provide regionalized services because of the single SCP to single IP mapping. For example, if a subscriber has traveled out of region, she would incur toll charges to access her service through interaction with an IP operating in her home region. As a consequence of the inflexibility of the IP/SCP configuration, the AIN network is inefficient.
Therefore, a need exists to better utilize IPs in the AIN. The configuration of the IP should promote optimal use of costly network resources. The configuration should more efficiently allot resources of an IP to multiple SCPs. In addition to providing economic savings, the modified network should also facilitate regionalized services and accommodate local calling scenarios where possible. By creating a regionalized approach, the out of region traveler in the previous example would be able to access her service via a local IP.
DIS

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Services control point selection in an advanced intelligent... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Services control point selection in an advanced intelligent..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Services control point selection in an advanced intelligent... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3294404

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.