Nucleic acid sequences encoding &bgr;-ketoacyl-ACP synthase...

Multicellular living organisms and unmodified parts thereof and – Method of introducing a polynucleotide molecule into or... – The polynucleotide alters fat – fatty oil – ester-type wax – or...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C800S278000, C800S286000, C800S306000, C800S312000, C800S320100, C800S288000, C435S419000, C536S023700, C536S024500

Reexamination Certificate

active

06706950

ABSTRACT:

TECHNICAL FIELD
The present invention is directed in general to &bgr;-ketoacycl-ACP synthase nucleic acid and amino acid sequences and constructs, and methods related thereto.
BACKGROUND OF THE INVENTION
Plant lipids have become indispensable in a number of industrial and nutritional applications. More importantly, plant lipids are used extensively for their nutritional value, which is determined by a plant's fatty acid composition. The value of any plant lipid is determined by its chemical structure, which is a result of a plant's metabolic processes. The chemical structure is characterized by varied degrees of unsaturation. Most vegetable oils from commercial plant varieties are composed primarily of palmitic (16:0), stearic (18:0), oleic (18:1), linoleic (18:2) and linolenic acid (18:3) acids.
Numerous research efforts have shown lipids to play a major role in development of many diseases, especially cardiovascular disorders. Recent research has examined in great detail the role of saturated and unsaturated fatty acids in potentiating the risk of coronary heart disease. Previously, it was believed that mono-unsaturated fatty acids had no effect on serum cholesterol and coronary heart disease risk. On the other hand, saturated fatty acids were considered to contribute to coronary heart disease while poly-unsaturated fatty acids were supposed to lower the risk of the same. It is now known that intake of both mono-unsaturated and poly-unsaturated fatty acids is beneficial for the heart and overall health. Several recent human clinical studies suggest that diets high in mono-unsaturated and/or poly-unsaturated fat and low in saturated fat may reduce the “bad” (low-density lipoprotein or LDL) cholesterol while maintaining the “good” (high-density lipoprotein or HDL) cholesterol. For example, a study performed by Mensink et al. concluded that a diet rich in mono-unsaturated fatty acids was as effective as a diet rich in (n-6)poly-unsaturated fats in lowering “bad” cholesterol (Mensink et al., N Engl J Med 321(7)436-441, August 1989). Furthermore, another study found that a diet rich in poly-unsaturated fats has a similar effect on “good” cholesterol concentrations in the blood as a diet rich in mono-unsaturated fats (Dreon et al., JAMA 263(18):2462-2466, May 9, 1990). Animal studies have also shown that when monkeys are fed mono-unsaturated and poly-unsaturated fat diets, they have similar concentrations of LDL cholesterol, and these values are significantly lower than the LDL values from animals that are fed saturated fats (Rudel et al., Arteriosclerosis, Thrombosis, and Vascular Biology, 15:2101-2110, 1995).
Therefore, a vegetable oil low in total saturates and high in mono-unsaturates and/or poly-unsaturates would provide significant health benefits to all consumers. The beneficial effects of oils high in poly-unsaturated fatty acids extend beyond lowering LDL cholesterol. For instance, linoleate and linolenate are essential fatty acids in human diets, rendering any edible oil high in these fats a useful nutritional supplement. Certain plants naturally possess high levels of poly-unsaturated fatty acids. This is exemplified by linseed oil, which is derived from the Flax plant (
Linum usitatissimum
) and contains over 50% linolenic acid. The oil content of flax is comparable to canola (around 40% dry weight of seed), however, high yields are only obtained in warm temperatures or subtropical climates. In addition, flax is highly susceptible to rust infection in the U.S. Therefore, even though natural plant sources of high poly-unsaturates exist, they are not always useful for large scale oil production. It would be commercially useful if a common crop such as canola, soybean or corn could be genetically transformed in such a way to minimize saturated fatty acid content.
To this effect, mutation-breeding programs have shown some promise in altering the levels of poly-unsaturated fatty acid levels in the edible oils of agronomic species. Examples of commercially grown varieties are high (85%) oleic sunflower and low (2%) linolenic flax (Knowles, (1980) pp. 35-38 in Applewhite, T. E., Ed., World Conference on Biotechnology for the Fats and Oils Industry Proceedings, American Oil Chemists' Society). However, these breeding programs are difficult to maintain and yields are often low. Hence, the option of production of transgenic plants is a desirable alternative for altering the content of saturated fats.
The enzymes of the fatty acid biosynthetic pathways are useful in creating transgenic plants that have altered fatty acid content. The &bgr;-ketoacyl-ACP (acyl carrier protein) family of synthase enzymes (also referred to herein as KAS) is especially attractive for plant transformation due to their indispensable role in fatty acid synthesis. To summarize their functions briefly, KAS III catalyzes the condensation of acetyl-CoA and malonyl-ACP to yield acetoacetyl-ACP in the first elongating reaction, KAS I utilizes saturated C
2
-C
14
and unsaturated C
16:1
-C
18:1
acyl-ACPs as substrates for condensation with a C
2
unit derived from malonyl-ACP; KAS II carries out the final extension step of unsaturated fatty acid biosynthesis (C
16:1
to C
18:1
) by utilizing C
14:0
and C
12:1
-C
16:1
acyl-ACPs. KAS IV has a substrate specificity between those of KAS III and KAS I, and is a medium chain specific condensing enzyme. See Siggaard-Andersen et al.,
Proc. Natl. Acad. Sci.,
Vol. 91, pp. 11027-11031, November 1994, and Dehesh et al.,
Plant J,
15(3):383-390, August 1998.
To elaborate, the biosynthesis of fatty acids is a complex process, involving numerous enzymes and multiple plant compartments. The production of fatty acids in plants begins in the plastid with the reaction between acetyl-CoA and malonyl-ACP to produce butyryl-ACP. Elongation of acetyl-ACP to 16- and 18-carbon fatty acids involves the cyclical action of the following sequence of reactions: condensation with a two-carbon unit from malonyl-ACP, reduction of the keto-function to an alcohol, dehydration to form an enoyl-ACP, and finally reduction of the enoyl-ACP to form the elongated saturated acyl-ACP. KAS I, catalyzes elongation up to palmitoyl-ACP (C
16:0
), whereas KAS II catalyzes the final elongation to stearoyl-ACP (C
18:0
). The longest chain fatty acids produced by the fatty acid synthases are typically 18 carbons long. A further fatty acid biochemical step occurring in the plastid is the desaturation of stearoyl-ACP (C
18:0
) to form oleoyl-ACP (C
18:1
) in a reaction catalyzed by a delta-9 desaturase.
Once the C
18:1
-ACP has been formed, the products undergo de-esterification, which allows movement into the cytoplasm, wherein they are incorporated into the “eukaryotic” lipid biosynthesis pathway. This occurs in the endoplasmic reticulum, which is responsible for the formation of phospholipids, triglycerides and other neutral lipids. Following transport of fatty acyl CoA's to the endoplasmic reticulum, subsequent sequential steps for triglyceride production can take place. For example, polyunsaturated fatty acyl groups such as linoleoyl and a-linolenoyl, are produced as the result of sequential desaturation of oleoyl acyl groups by the action of membrane-bound enzymes. Triglycerides are formed by action of the 1-, 2-, and 3-acyl-ACP transferase enzymes glycerol-3-phosphate acyltransferase, lysophosphatidic acid acyltransferase and diacylglycerol acyltransferase. Alternatively, fatty acids are linked to glycerol-3-phosphate (prokaryotic path), further unsaturated, and used for synthesis of chloroplast lipids. A portion of cytoplasmic lipids returns to the chloroplast. The preferential use of either eukaryotic or prokaryotic pathway depends on the particular plant species. The fatty acid composition of a plant cell is a reflection of the free fatty acid pool and the fatty acids (fatty acyl groups) incorporated into triglycerides as a result of the acyltransferase activities.
The properties of a given triglyceride will depend upon the various combinations of fatty acyl groups in the diff

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Nucleic acid sequences encoding &bgr;-ketoacyl-ACP synthase... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Nucleic acid sequences encoding &bgr;-ketoacyl-ACP synthase..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Nucleic acid sequences encoding &bgr;-ketoacyl-ACP synthase... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3292570

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.